Skip to main content
Log in

Ethylenedioxy-PIP2 Oxalate Reduces Ganglioside Storage in Juvenile Sandhoff Disease Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step in ganglioside biosynthesis, reduce storage of GM2 and GA2. Limited brain access or adverse effects have hampered the therapeutic efficacy of the clinically approved substrate reduction molecules, eliglustat tartrate and the imino sugar NB-DNJ (Miglustat). The novel eliglustat tartrate analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (EtDO-PIP2, CCG-203586 or “3h”), was recently reported to reduce glucosylceramide in murine brain. Here we assessed the therapeutic efficacy of 3h in juvenile Sandhoff (Hexb−/−) mice. Sandhoff mice received intraperitoneal injections of phosphate buffered saline (PBS) or 3h (60 mg/kg/day) from postnatal day 9 (p-9) to postnatal day 15 (p-15). Brain weight and brain water content was similar in 3h and PBS-treated mice. 3h significantly reduced total ganglioside sialic acid, GM2, and GA2 content in cerebrum, cerebellum and liver of Sandhoff mice. Data from the liver showed that 3h reduced the key upstream ganglioside precursor (glucosylceramide), providing evidence for an on target mechanism of action. No significant differences were seen in the distribution of cholesterol or of neutral and acidic phospholipids. These data suggest that 3h can be an effective alternative to existing substrate reduction molecules for ganglioside storage diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GSL:

Glycosphingolipid

GlcCer:

Glucosylceramide

LSD:

Lysosomal storage disease

SD:

Sandhoff disease

3h, EtDO-PIP2-oxalate:

Ethylenedioxy-PIP2-oxalate

CCG-203586:

2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide oxalate

NGNA:

N-glycolylneuraminic acid

NB-DNJ:

N-butyldeoxynojirimycin

NB-DGJ:

N-butyldeoxygalactonojirimycin

References

  1. Kolter T, Sandhoff K (2006) Sphingolipid metabolism diseases. Biochim Biophys Acta 1758:2057–2079

    Article  PubMed  CAS  Google Scholar 

  2. Sango K, Yamanaka S, Hoffmann A et al (1995) Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11:170–176

    Article  PubMed  CAS  Google Scholar 

  3. Phaneuf D, Wakamatsu N, Huang JQ et al (1996) Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum Mol Genet 5:1–14

    Article  PubMed  CAS  Google Scholar 

  4. Jeyakumar M, Butters TD, Dwek RA et al (2002) Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 28:343–357

    Article  PubMed  CAS  Google Scholar 

  5. Jeyakumar M, Thomas R, Elliot-Smith E et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126:974–987

    Article  PubMed  CAS  Google Scholar 

  6. Kyrkanides S, Miller AW, Miller JN et al (2008) Peripheral blood mononuclear cell infiltration and neuroinflammation in the HexB−/− mouse model of neurodegeneration. J Neuroimmunol 203:50–57

    Article  PubMed  CAS  Google Scholar 

  7. Platt FM, Neises GR, Karlsson GB et al (1994) N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J Biol Chem 269:27108–27114

    PubMed  CAS  Google Scholar 

  8. Ichikawa S, Hirabayashi Y (1998) Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8:198–202

    Article  PubMed  CAS  Google Scholar 

  9. Baek RC, Kasperzyk JL, Platt FM et al (2008) N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int 52:1125–1133

    Article  PubMed  CAS  Google Scholar 

  10. Arthur JR, Lee JP, Snyder EY et al (2012) Therapeutic effects of stem cells and substrate reduction in juvenile Sandhoff mice. Neurochem Res 37:1335–1343

    Article  PubMed  CAS  Google Scholar 

  11. Platt FM, Neises GR, Reinkensmeier G et al (1997) Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science (New York, N.Y) 276:428–431

  12. Jeyakumar M, Butters TD, Cortina-Borja M et al (1999) Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc Natl Acad Sci USA 96:6388–6393

    Article  PubMed  CAS  Google Scholar 

  13. Kasperzyk JL, d’Azzo A, Platt FM et al (2005) Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 46:744–751

    Article  PubMed  CAS  Google Scholar 

  14. Kasperzyk JL, El-Abbadi MM, Hauser EC et al (2004) N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 89:645–653

    Article  PubMed  CAS  Google Scholar 

  15. Andersson U, Butters TD, Dwek RA et al (2000) N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol 59:821–829

    Article  PubMed  CAS  Google Scholar 

  16. Andersson U, Smith D, Jeyakumar M et al (2004) Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis 16:506–515

    Article  PubMed  CAS  Google Scholar 

  17. Elliot-Smith E, Speak AO, Lloyd-Evans E et al (2008) Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol Genet Metab 94:204–211

    Article  PubMed  CAS  Google Scholar 

  18. Marshall J, Ashe KM, Bangari D et al (2010) Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease. PLoS ONE 5:e15033

    Article  PubMed  Google Scholar 

  19. Marshall J, McEachern KA, Chuang WL et al (2010) Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy. J Inherit Metab Dis 33:281–289

    Article  PubMed  CAS  Google Scholar 

  20. Hollak CE, Hughes D, van Schaik IN et al (2009) Miglustat (Zavesca) in type 1 Gaucher disease: 5-year results of a post-authorisation safety surveillance programme. Pharmacoepidemiol Drug Saf 18:770–777

    Article  PubMed  CAS  Google Scholar 

  21. Lukina E, Watman N, Arreguin EA et al (2010) A phase 2 study of eliglustat tartrate (Genz-112638), an oral substrate reduction therapy for Gaucher disease type 1. Blood 116:893–899

    Article  PubMed  CAS  Google Scholar 

  22. Lukina E, Watman N, Arreguin EA et al (2010) Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood 116:4095–4098

    Article  PubMed  CAS  Google Scholar 

  23. Machaczka M, Hast R, Dahlman I et al (2012) Substrate reduction therapy with miglustat for type 1 Gaucher disease: a retrospective analysis from a single institution. Ups J Med Sci 117:28–34

    Article  PubMed  Google Scholar 

  24. Shayman JA (2010) ELIGLUSTAT TARTRATE: glucosylceramide synthase inhibitor treatment of type 1 Gaucher disease. Drugs Future 35:613–620

    PubMed  CAS  Google Scholar 

  25. Cox TM, Aerts JM, Andria G et al (2003) The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type I (non-neuronopathic) Gaucher disease: a position statement. J Inherit Metab Dis 26:513–526

    Article  PubMed  CAS  Google Scholar 

  26. Cox TM (2010) Eliglustat tartrate, an orally active glucocerebroside synthase inhibitor for the potential treatment of Gaucher disease and other lysosomal storage diseases. Curr Opin Investig Drugs 11:1169–1181

    PubMed  CAS  Google Scholar 

  27. Brumshtein B, Greenblatt HM, Butters TD et al (2007) Crystal structures of complexes of N-butyl- and N-nonyl-deoxynojirimycin bound to acid beta-glucosidase: insights into the mechanism of chemical chaperone action in Gaucher disease. J Biol Chem 282:29052–29058

    Article  PubMed  CAS  Google Scholar 

  28. Alfonso P, Pampin S, Estrada J et al (2005) Miglustat (NB-DNJ) works as a chaperone for mutated acid beta-glucosidase in cells transfected with several Gaucher disease mutations. Blood Cells Mol Dis 35:268–276

    Article  PubMed  CAS  Google Scholar 

  29. McEachern KA, Fung J, Komarnitsky S et al (2007) A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol Genet Metab 91:259–267

    Article  PubMed  CAS  Google Scholar 

  30. Larsen SD, Wilson MW, Abe A et al (2012) Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain. J Lipid Res 53:282–291

    Article  PubMed  CAS  Google Scholar 

  31. Galjaard H (1979) Early diagnosis and prevention of genetic disease. Ann Clin Biochem 16:343–353

    PubMed  CAS  Google Scholar 

  32. Baek RC, Martin DR, Cox NR et al (2009) Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 44:197–205

    Article  PubMed  CAS  Google Scholar 

  33. Hauser EC, Kasperzyk JL, d’Azzo A et al (2004) Inheritance of lysosomal acid beta-galactosidase activity and gangliosides in crosses of DBA/2J and knockout mice. Biochem Genet 42:241–257

    Article  PubMed  CAS  Google Scholar 

  34. Macala LJ, Yu RK, Ando S (1983) Analysis of brain lipids by high performance thin-layer chromatography and densitometry. J Lipid Res 24:1243–1250

    PubMed  CAS  Google Scholar 

  35. Seyfried TN, Glaser GH, Yu RK (1979) Genetic variability for regional brain gangliosides in five strains of young mice. Biochem Genet 17:43–55

    Article  PubMed  CAS  Google Scholar 

  36. Seyfried TN, Yu RK (1980) Heterosis for brain myelin content in mice. Biochem Genet 18:1229–1238

    Article  PubMed  CAS  Google Scholar 

  37. Lee JP, Jeyakumar M, Gonzalez R et al (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13:439–447

    Article  PubMed  CAS  Google Scholar 

  38. Denny CA, Heinecke KA, Kim YP et al (2010) Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. J Neurochem 113:1525–1535

    PubMed  CAS  Google Scholar 

  39. Ashe KM, Bangari D, Li L et al (2011) Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease. PLoS ONE 6:e21758

    Article  PubMed  CAS  Google Scholar 

  40. Brigande JV, Platt FM, Seyfried TN (1998) Inhibition of glycosphingolipid biosynthesis does not impair growth or morphogenesis of the postimplantation mouse embryo. J Neurochem 70:871–882

    Article  PubMed  CAS  Google Scholar 

  41. Platt FM, Neises GR, Dwek RA et al (1994) N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 269:8362–8365

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part from NIH grants R21NS079633-1, 2RO1 DK055823, (JAS) and NS055195 (TNS) and the Boston College Research Expense Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Seyfried.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1756 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arthur, J.R., Wilson, M.W., Larsen, S.D. et al. Ethylenedioxy-PIP2 Oxalate Reduces Ganglioside Storage in Juvenile Sandhoff Disease Mice. Neurochem Res 38, 866–875 (2013). https://doi.org/10.1007/s11064-013-0992-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0992-5

Keywords

Navigation