Skip to main content
Log in

Structural Plasticity of Interneurons in the Adult Brain: Role of PSA-NCAM and Implications for Psychiatric Disorders

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuronal structural plasticity is known to have a major role in cognitive processes and in the response of the CNS to aversive experiences. This type of plasticity involves processes ranging from neurite outgrowth/retraction or dendritic spine remodeling, to the incorporation of new neurons to the established circuitry. However, the study of how these structural changes take place has been focused mainly on excitatory neurons, while little attention has been paid to interneurons. The exploration of these plastic phenomena in interneurons is very important, not only for our knowledge of CNS physiology, but also for understanding better the etiology of different psychiatric and neurological disorders in which alterations in the structure and connectivity of inhibitory networks have been described. Here we review recent work on the structural remodeling of interneurons in the adult brain, both in basal conditions and after chronic stress or sensory deprivation. We also describe studies from our laboratory and others on the putative mediators of this interneuronal structural plasticity, focusing on the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). This molecule is expressed by some interneurons in the adult CNS and, through its anti-adhesive and insulating properties, may participate in the remodeling of their structure. Finally, we review recent findings on the possible implication of PSA-NCAM on the remodeling of inhibitory neurons in certain psychiatric disorders and their treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fu M, Zuo Y (2011) Experience-dependent structural plasticity in the cortex. Trends Neurosci 34:177–187

    Article  PubMed  CAS  Google Scholar 

  2. Markham JA, Greenough WT (2004) Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol 1:351–363

    Article  PubMed  Google Scholar 

  3. O’Malley A, O’Connell C, Murphy KJ et al (2000) Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 99:229–232

    Article  PubMed  Google Scholar 

  4. O’Malley A, O’Connell C, Regan CM (1998) Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6 h post-training period of consolidation. Neuroscience 87:607–613

    Article  PubMed  Google Scholar 

  5. Muller D, Toni N, Buchs PA (2000) Spine changes associated with long-term potentiation. Hippocampus 10:596–604

    Article  PubMed  CAS  Google Scholar 

  6. Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    Article  PubMed  CAS  Google Scholar 

  7. Bonhoeffer T, Yuste R (2002) Spine motility: phenomenology, mechanisms, and function. Neuron 35:1019–1027

    Article  PubMed  CAS  Google Scholar 

  8. Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089

    Article  PubMed  CAS  Google Scholar 

  9. McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189

    Article  PubMed  CAS  Google Scholar 

  10. Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433

    Article  PubMed  CAS  Google Scholar 

  11. Radley JJ, Rocher AB, Rodriguez A et al (2008) Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J Comp Neurol 507:1141–1150

    Article  PubMed  Google Scholar 

  12. Radley JJ, Rocher AB, Miller M et al (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320

    Article  PubMed  Google Scholar 

  13. McEwen BS, Chattarji S (2004) Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol 14(Suppl 5):S497–S502

    Article  PubMed  CAS  Google Scholar 

  14. Wallace M, Luine V, Arellanos A et al (2006) Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res 1126:176–182

    Article  PubMed  CAS  Google Scholar 

  15. Moult PR, Harvey J (2008) Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity. Cell Adh Migr 2:269–275

    Article  PubMed  Google Scholar 

  16. Hao J, Rapp PR, Leffler AE et al (2006) Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J Neurosci 26:2571–2578

    Article  PubMed  CAS  Google Scholar 

  17. de Castilhos J, Forti CD, Achaval M et al (2008) Dendritic spine density of posterodorsal medial amygdala neurons can be affected by gonadectomy and sex steroid manipulations in adult rats: a golgi study. Brain Res 1240:73–81

    Article  PubMed  CAS  Google Scholar 

  18. Markham JA, McKian KP, Stroup TS et al (2005) Sexually dimorphic aging of dendritic morphology in CA1 of hippocampus. Hippocampus 15:97–103

    Article  PubMed  CAS  Google Scholar 

  19. Markham JA, Juraska JM (2002) Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiol Aging 23:579–588

    Article  PubMed  Google Scholar 

  20. Pyza E, Gorska-Andrzejak J (2004) Involvement of glial cells in rhythmic size changes in neurons of the housefly’s visual system. J Neurobiol 59:205–215

    Article  PubMed  Google Scholar 

  21. Lee WC, Chen JL, Huang H et al (2008) A dynamic zone defines interneuron remodeling in the adult neocortex. Proc Natl Acad Sci USA 105:19968–19973

    Article  PubMed  CAS  Google Scholar 

  22. Chen JL, Flanders GH, Lee WC et al (2011) Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit. J Neurosci 31:12437–12443

    Article  PubMed  CAS  Google Scholar 

  23. Chen JL, Nedivi E (2010) Neuronal structural remodeling: is it all about access? Curr Opin Neurobiol 20:557–562

    Article  PubMed  CAS  Google Scholar 

  24. Chen JL, Lin WC, Cha JW et al (2011) Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat Neurosci 14:587–594

    Article  PubMed  CAS  Google Scholar 

  25. Prince DA, Parada I, Scalise K et al (2009) Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 50(Suppl 2):30–40

    Article  PubMed  Google Scholar 

  26. Kalus P, Bondzio J, Federspiel A et al (2002) Cell-type specific alterations of cortical interneurons in schizophrenic patients. NeuroReport 13:713–717

    Article  PubMed  Google Scholar 

  27. Gilabert-Juan J, Castillo-Gomez E, Perez-Rando M et al (2011) Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp Neurol 232:33–40

    Article  PubMed  CAS  Google Scholar 

  28. Gilabert-Juan J, Castillo-Gomez E, Guirado R et al (2012) Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice. Brain Struct Funct (in press)

  29. Vyas A, Mitra R, Shankaranarayana Rao BS et al (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818

    PubMed  CAS  Google Scholar 

  30. Radley JJ, Sisti HM, Hao J et al (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6

    Article  PubMed  CAS  Google Scholar 

  31. Lowy MT, Wittenberg L, Yamamoto BK (1995) Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 65:268–274

    Article  PubMed  CAS  Google Scholar 

  32. Mitra R, Sapolsky RM (2008) Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci USA 105:5573–5578

    Article  PubMed  CAS  Google Scholar 

  33. Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49:245–253

    Article  PubMed  CAS  Google Scholar 

  34. Martin KP, Wellman CL (2011) NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb Cortex 21:2366–2373

    Article  PubMed  Google Scholar 

  35. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  36. Kawaguchi Y, Karube F, Kubota Y (2006) Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb Cortex 16:696–711

    Article  PubMed  Google Scholar 

  37. Kubota Y, Shigematsu N, Karube F et al (2011) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21:1803–1817

    Article  PubMed  Google Scholar 

  38. Trachtenberg JT, Chen BE, Knott GW et al (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  PubMed  CAS  Google Scholar 

  39. Keck T, Scheuss V, Jacobsen RI et al (2011) Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71:869–882

    Article  PubMed  CAS  Google Scholar 

  40. Mitra R, Jadhav S, McEwen BS et al (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 102:9371–9376

    Article  PubMed  CAS  Google Scholar 

  41. Cameron HA, Dayer AG (2008) New interneurons in the adult neocortex: small, sparse, but significant? Biol. Psychiatry 63:650–655

    Google Scholar 

  42. Inta D, Alfonso J, von Engelhardt J et al (2008) Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci USA 105:20994–20999

    Article  PubMed  CAS  Google Scholar 

  43. Le Magueresse C, Alfonso J, Khodosevich K et al (2011) Small axonless neurons: postnatally generated neocortical interneurons with delayed functional maturation. J Neurosci 31:16731–16747

    Article  PubMed  CAS  Google Scholar 

  44. Bonfanti L, Nacher J (2012) New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 98:1–15

    Article  PubMed  Google Scholar 

  45. Ohira K, Furuta T, Hioki H et al (2010) Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci 13:173–179

    Article  PubMed  CAS  Google Scholar 

  46. Dayer AG, Cleaver KM, Abouantoun T et al (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427

    Article  PubMed  CAS  Google Scholar 

  47. Bedard A, Gravel C, Parent A (2006) Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res 170:501–512

    Article  PubMed  CAS  Google Scholar 

  48. Kreuzberg M, Kanov E, Timofeev O et al (2010) Increased subventricular zone-derived cortical neurogenesis after ischemic lesion. Exp Neurol 226:90–99

    Article  PubMed  CAS  Google Scholar 

  49. Ohira K (2011) Injury-induced neurogenesis in the mammalian forebrain. Cell Mol Life Sci 68:1645–1656

    Article  PubMed  CAS  Google Scholar 

  50. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    Article  PubMed  CAS  Google Scholar 

  51. Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129–164

    Article  PubMed  CAS  Google Scholar 

  52. Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101–118

    Article  PubMed  CAS  Google Scholar 

  53. Gomez-Climent MA, Guirado R, Castillo-Gomez E et al (2011) The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed in a subpopulation of mature cortical interneurons characterized by reduced structural features and connectivity. Cereb Cortex 21:1028–1041

    Article  PubMed  Google Scholar 

  54. Theodosis DT, Bonfanti L, Olive S et al (1994) Adhesion molecules and structural plasticity of the adult hypothalamo-neurohypophysial system. Psychoneuroendocrinology 19:455–462

    Article  PubMed  CAS  Google Scholar 

  55. Seki T, Arai Y (1993) Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 13:2351–2358

    PubMed  CAS  Google Scholar 

  56. Bonfanti L, Theodosis DT (1994) Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience 62:291–305

    Article  PubMed  CAS  Google Scholar 

  57. Rousselot P, Lois C, Alvarez-Buylla A (1995) Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J Comp Neurol 351:51–61

    Article  PubMed  CAS  Google Scholar 

  58. Gomez-Climent MA, Castillo-Gomez E, Varea E et al (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18:2229–2240

    Article  PubMed  Google Scholar 

  59. Gomez-Climent MA, Hernandez-Gonzalez S, Shionoya K et al (2011) Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex. Neuroscience 181:18–27

    Article  PubMed  CAS  Google Scholar 

  60. Varea E, Nacher J, Blasco-Ibanez JM et al (2005) PSA-NCAM expression in the rat medial prefrontal cortex. Neuroscience 136:435–443

    Article  PubMed  CAS  Google Scholar 

  61. Varea E, Castillo-Gomez E, Gomez-Climent MA et al (2007) Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. Eur Neuropsychopharmacol 17:546–557

    Article  PubMed  CAS  Google Scholar 

  62. Guirado R, Varea E, Castillo-Gomez E et al (2009) Effects of chronic fluoxetine treatment on the rat somatosensory cortex: activation and induction of neuronal structural plasticity. Neurosci Lett 457:12–15

    Article  PubMed  CAS  Google Scholar 

  63. Nacher J, Blasco-Ibanez JM, McEwen BS (2002) Non-granule PSA-NCAM immunoreactive neurons in the rat hippocampus. Brain Res 930:1–11

    Article  PubMed  CAS  Google Scholar 

  64. Bonfanti L, Olive S, Poulain DA et al (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49:419–436

    Article  PubMed  CAS  Google Scholar 

  65. Foley AG, Ronn LC, Murphy KJ et al (2003) Distribution of polysialylated neural cell adhesion molecule in rat septal nuclei and septohippocampal pathway: transient increase of polysialylated interneurons in the subtriangular septal zone during memory consolidation. J Neurosci Res 74:807–817

    Article  PubMed  CAS  Google Scholar 

  66. Nacher J, Lanuza E, McEwen BS (2002) Distribution of PSA-NCAM expression in the amygdala of the adult rat. Neuroscience 113:479–484

    Article  PubMed  CAS  Google Scholar 

  67. Arellano JI, DeFelipe J, Munoz A (2002) PSA-NCAM immunoreactivity in chandelier cell axon terminals of the human temporal cortex. Cereb Cortex 12:617–624

    Article  PubMed  Google Scholar 

  68. Varea E, Guirado R, Gilabert-Juan J et al (2012) Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. J Psychiatr Res 46:189–197

    Article  PubMed  Google Scholar 

  69. Gilabert-Juan J, Varea E, Guirado R et al (2012) Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neurosci Lett 530:97–102

    Article  PubMed  CAS  Google Scholar 

  70. Mikkonen M, Soininen H, Tapiola T et al (1999) Hippocampal plasticity in alzheimer’s disease: changes in highly polysialylated NCAM immunoreactivity in the hippocampal formation. Eur J Neurosci 11:1754–1764

    Article  PubMed  CAS  Google Scholar 

  71. Mikkonen M, Soininen H, Kalvianen R et al (1998) Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol 44:923–934

    Article  PubMed  CAS  Google Scholar 

  72. Oliva AA Jr, Jiang M, Lam T et al (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GAB Aergic interneurons. J Neurosci 20:3354–3368

    PubMed  CAS  Google Scholar 

  73. Varea E, Castillo-Gomez E, Gomez-Climent MA et al (2007) PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat 33:202–209

    Article  PubMed  CAS  Google Scholar 

  74. Varea E, Guirado R, Gilabert-Juan J et al (2011) Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. J Psychiatr Res 46:189–197

    Article  PubMed  Google Scholar 

  75. Melzer S, Michael M, Caputi A et al (2012) Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science 335:1506–1510

    Article  PubMed  CAS  Google Scholar 

  76. Seki T, Arai Y (1999) Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J Comp Neurol 410:115–125

    Article  PubMed  CAS  Google Scholar 

  77. Schuster T, Krug M, Stalder M et al (2001) Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. J Neurobiol 49:142–158

    Article  PubMed  CAS  Google Scholar 

  78. Bukalo O, Fentrop N, Lee AY et al (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24:1565–1577

    Article  PubMed  CAS  Google Scholar 

  79. Petilla Interneuron Nomenclature Group, Ascoli GA, Alonso-Nanclares L et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Article  PubMed  CAS  Google Scholar 

  80. Markram H, Toledo-Rodriguez M, Wang Y et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  81. Castillo-Gomez E, Varea E, Blasco-Ibanez JM et al (2011) Polysialic acid is required for dopamine d2 receptor-mediated plasticity involving inhibitory circuits of the rat medial prefrontal cortex. PLoS ONE 6:e29516

    Article  PubMed  CAS  Google Scholar 

  82. Schwartzkroin PA, Kunkel DD (1985) Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus. J Comp Neurol 232:205–218

    Article  PubMed  CAS  Google Scholar 

  83. Babb TL, Brown WJ (1986) Neuronal, dendritic, and vascular profiles of human temporal lobe epilepsy correlated with cellular physiology in vivo. Adv Neurol 44:949–966

    PubMed  CAS  Google Scholar 

  84. Hildebrandt H, Muhlenhoff M, Gerardy-Schahn R (2008) Polysialylation of NCAM. Neurochem. Res. [Epub ahead of print]

  85. Vitureira N, Andres R, Perez-Martinez E et al (2010) Podocalyxin is a novel polysialylated neural adhesion protein with multiple roles in neural development and synapse formation. PLoS ONE 5:e12003

    Article  PubMed  CAS  Google Scholar 

  86. Hildebrandt H, Becker C, Murau M et al (1998) Heterogeneous expression of the polysialyltransferases ST8Sia II and ST8Sia IV during postnatal rat brain development. J Neurochem 71:2339–2348

    Article  PubMed  CAS  Google Scholar 

  87. Nacher J, Guirado R, Varea E et al (2010) Divergent impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex. Neuroscience 167:825–837

    Article  PubMed  CAS  Google Scholar 

  88. Marti-Mengual U, Varea E, Crespo C et al (2012) Cells expressing markers of immature neurons in the amygdala of adult humans. Eur J Neurosci 37:10–22

    Article  PubMed  Google Scholar 

  89. Varea E, Castillo-Gomez E, Gomez-Climent MA et al (2009) Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging 30:808–818

    Article  PubMed  CAS  Google Scholar 

  90. Castillo-Gomez E, Gomez-Climent MA, Varea E et al (2008) Dopamine acting through D2 receptors modulates the expression of PSA-NCAM, a molecule related to neuronal structural plasticity, in the medial prefrontal cortex of adult rats. Exp Neurol 214:97–111

    Article  PubMed  CAS  Google Scholar 

  91. Guirado R, Sanchez-Matarredona D, Varea E et al (2012) Chronic fluoxetine treatment in middle-aged rats induces changes in the expression of plasticity-related molecules and in neurogenesis. BMC Neurosci 13:5

    Article  PubMed  CAS  Google Scholar 

  92. Varea E, Blasco-Ibanez JM, Gomez-Climent MA et al (2007) Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 32:803–812

    Article  PubMed  CAS  Google Scholar 

  93. Nacher J, Gomez-Climent MA, McEwen B (2004) Chronic non-invasive glucocorticoid administration decreases polysialylated neural cell adhesion molecule expression in the adult rat dentate gyrus. Neurosci Lett 370:40–44

    Article  PubMed  CAS  Google Scholar 

  94. Nacher J, Pham K, Gil-Fernandez V et al (2004) Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience 126:503–509

    Article  PubMed  CAS  Google Scholar 

  95. Muller D, Mendez P, De Roo M et al (2008) Role of NCAM in spine dynamics and synaptogenesis. Neurochem Res [Epub ahead of print]

  96. Di Cristo G, Chattopadhyaya B, Kuhlman SJ et al (2007) Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10:1569–1577

    Article  PubMed  CAS  Google Scholar 

  97. Kochlamazashvili G, Senkov O, Grebenyuk S et al (2010) Neural cell adhesion molecule-associated polysialic acid regulates synaptic plasticity and learning by restraining the signaling through GluN2B-containing NMDA receptors. J Neurosci 30:4171–4183

    Article  PubMed  CAS  Google Scholar 

  98. Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241–246

    Article  PubMed  CAS  Google Scholar 

  99. Lewis DA, Gonzalez-Burgos G (2008) Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 33:141–165

    Article  PubMed  Google Scholar 

  100. Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  PubMed  CAS  Google Scholar 

  101. Daskalakis ZJ, Fitzgerald PB, Christensen BK (2007) The role of cortical inhibition in the pathophysiology and treatment of schizophrenia. Brain Res Rev 56:427–442

    Article  PubMed  CAS  Google Scholar 

  102. Pham K, Nacher J, Hof PR et al (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 17:879–886

    Article  PubMed  Google Scholar 

  103. Sandi C, Merino JJ, Cordero MI et al (2001) Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience 102:329–339

    Article  PubMed  CAS  Google Scholar 

  104. Cordero MI, Rodriguez JJ, Davies HA et al (2005) Chronic restraint stress down-regulates amygdaloid expression of polysialylated neural cell adhesion molecule. Neuroscience 133:903–910

    Article  PubMed  CAS  Google Scholar 

  105. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917–930

    Article  PubMed  CAS  Google Scholar 

  106. Di Forti M, Lappin JM, Murray RM (2007) Risk factors for schizophrenia–all roads lead to dopamine. Eur Neuropsychopharmacol 17(Suppl 2):S101–S107

    Article  PubMed  CAS  Google Scholar 

  107. Brennaman LH, Maness PF (2010) NCAM in neuropsychiatric and neurodegenerative disorders. Adv Exp Med Biol 663:299–317

    Article  PubMed  CAS  Google Scholar 

  108. Sullivan PF, Keefe RS, Lange LA et al (2007) NCAM1 and neurocognition in schizophrenia. Biol Psychiatry 61:902–910

    Article  PubMed  CAS  Google Scholar 

  109. Tao R, Li C, Zheng Y et al (2007) Positive association between SIAT8B and schizophrenia in the chinese han population. Schizophr Res 90:108–114

    Article  PubMed  Google Scholar 

  110. Barbeau D, Liang JJ, Robitalille Y et al (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92:2785–2789

    Article  PubMed  CAS  Google Scholar 

  111. Curley AA, Arion D, Volk DW et al (2011) Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 168:921–929

    Article  PubMed  Google Scholar 

  112. Gilabert-Juan J, Molto MD, Nacher J (2012) Post-weaning social isolation rearing influences the expression of molecules related to inhibitory neurotransmission and structural plasticity in the amygdala of adult rats. Brain Res 1448:129–136

    Article  PubMed  CAS  Google Scholar 

  113. Bird ED, Spokes EG, Barnes J et al (1977) Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. Lancet 2:1157–1158

    Article  PubMed  CAS  Google Scholar 

  114. Spokes EG, Garrett NJ, Rossor MN et al (1980) Distribution of GABA in post-mortem brain tissue from control, psychotic and huntington’s chorea subjects. J Neurol Sci 48:303–313

    Article  PubMed  CAS  Google Scholar 

  115. Hildebrandt H, Mühlenhoff M, Oltmann-Norden I, et al (2009) Imbalance of neural cell adhesion molecule and polysialyltransferase alleles causes defective brain connectivity. Brain 132: 2831–2838

    Google Scholar 

  116. Calandreau L, Marquez C, Bisaz R et al (2010) Differential impact of polysialyltransferase ST8SiaII and ST8SiaIV knockout on social interaction and aggression. Genes Brain Behavior 9:958–967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work from our laboratory described in this review has been funded through the following projects: Spanish Ministry of Science and Innovation (MICINN-FEDER) BFU2009-12284/BFI, MICINN-PIM2010ERN-00577/NEUCONNECT in the frame of ERA-NET NEURON”, Fundación Alicia Koplowitz (www.fundacionaliciakoplowitz.org), Stanley Medical Research Institute (www.stanleyresearch.org) and Generalitat Valenciana ACOMP/2012/229 to JN.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Nacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nacher, J., Guirado, R. & Castillo-Gómez, E. Structural Plasticity of Interneurons in the Adult Brain: Role of PSA-NCAM and Implications for Psychiatric Disorders. Neurochem Res 38, 1122–1133 (2013). https://doi.org/10.1007/s11064-013-0977-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0977-4

Keywords

Navigation