Skip to main content
Log in

Isolation Stress Exposure and Consumption of Palatable Diet During the Prepubertal Period Leads to Cellular Changes in the Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Social isolation is one of the most potent stressors in the prepubertal period and may influence disease susceptibility or resilience in adulthood. The glucocorticoid response and, consequently, the adaptive response to stress involve important changes in mitochondrial functions and apoptotic signaling. Previous studies have shown that consumption of a palatable diet reduces some stress effects. Therefore, the aim of the present study was to investigate whether isolation stress in early life can lead to cellular alterations in the hippocampus. For this, we evaluated oxidative stress parameters, DNA breakage index, mitochondrial mass and potential, respiratory chain enzyme activities, apoptosis, and necrosis in the hippocampus of juvenile male rats submitted or not to isolation stress during the pre-puberty period. We also verified whether consumption of a palatable diet during this period can modify stress effects. Results show that stress led to an oxidative imbalance, DNA breaks, increased the mitochondrial potential and early apoptosis, and decreased the number of live and necrotic cells. In addition, the palatable diet increased glutathione peroxidase activity, high mitochondrial potential and complex I–III activity in the hippocampus of juvenile rats. The administration of a palatable diet during the isolation period prevented the stress effects that caused the reduction in live cells and increased apoptosis. In conclusion, the stress experienced during the pre-pubertal period induced a hippocampal oxidative imbalance, DNA damage, mitochondrial dysfunction, and increased apoptosis, while consumption of a palatable diet attenuated some of these effects of exposure, such as the reduction in live cells and increased apoptosis, besides favoring an increase in antioxidant enzymes activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCormick CM, Mathews IZ (2007) HPA function in adolescence: role of sex hormones in its regulation and the enduring consequences of exposure to stressors. Pharmacol Biochem Behav 86:220–233

    Article  PubMed  CAS  Google Scholar 

  2. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9:947–957

    PubMed  CAS  Google Scholar 

  3. Arakawa H (2005) Interaction between isolation rearing and social development on exploratory behavior in male rats. Behav Process 70:223–234

    Article  Google Scholar 

  4. Ferdman N, Murmu RP, Bock J, Leshem M (2007) Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic andspine morphology in prefrontal cortex of rats. Behav Brain Res 180:174–182

    Article  PubMed  CAS  Google Scholar 

  5. Weiss IC, Pryce CR, Jongen-Rêlo AL, Nanz-Bahr NI, Feldon J (2004) Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behav Brain Res 152:279–295

    Article  PubMed  CAS  Google Scholar 

  6. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185

    Article  PubMed  CAS  Google Scholar 

  7. Sapolsky RM (2003) Stress and plasticity in the limbic system. Neurochem Res 28:1735–1742

    Article  PubMed  CAS  Google Scholar 

  8. McIntosh LJ, Sapolsky RM (1996) Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induce toxicity in neuronal culture. Exp Neurol 141:201–206

    Article  PubMed  CAS  Google Scholar 

  9. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  10. Halliwell B, Gutteridge JM (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899:136–147

    PubMed  Google Scholar 

  11. Kovacheva-Ivanova S, Bakalova R, Ribavov SR (1994) Immobilization stress enhances lipid’ peroxidation in the rat lungs. Materials and methods. Gen Physiol Biophys 13:469–482

    PubMed  CAS  Google Scholar 

  12. Mitra R, Vyas A, Chatterjee G, Chattarji S (2005) Chronic stress induced modulation of different states of anxiety like behaviour in female rats. Neurosci Lett 383:278–283

    Article  PubMed  CAS  Google Scholar 

  13. Oishi K, Yokoi M, Maekawa S, Sodeyama C, Shiraishi T, Kondo R, Kuriyama T, Machida K (1999) Oxidative stress and haematological changes in immobilized rats. Acta Physiol Scand 165:65–69

    Article  PubMed  CAS  Google Scholar 

  14. Radak Z, Sasvari M, Nyakas C, Kaneko T, Tahara S, Ohno H, Goto S (2001) Single bout of exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochem Int 39:33–38

    Article  PubMed  CAS  Google Scholar 

  15. Krolow R, Noschang C, Weis SN, Pettenuzzo LF, Huffell AP, Arcego DM, Marcolin M, Mota CS, Kolling J, Scherer EB, Wyse AT, Dalmaz C (2012) Isolation stress during the prepubertal period in rats induces long-lasting neurochemical changes in the prefrontal cortex. Neurochem Res 37:63–73

    Article  Google Scholar 

  16. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198

    Article  PubMed  CAS  Google Scholar 

  17. McKernan DP, Dinan TG, Cryan JF (2009) “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 88:246–263

    Article  PubMed  CAS  Google Scholar 

  18. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  19. Lindsten T, Zong WX, Thompson CB (2005) De fining the role of the Bcl-2 family of proteins in the nervous system. Neuroscientist 11:10–15

    Article  PubMed  CAS  Google Scholar 

  20. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  21. Epel E, Lapidus R, McEwen B, Brownell K (2001) Stress may add bite to appetite in women. A laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology 26:37–49

    Article  PubMed  CAS  Google Scholar 

  22. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458

    Article  PubMed  CAS  Google Scholar 

  23. Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF (2004) Chronic stress promotes palatable feeding, which reduces signs of stress. Feedforward and feed-back effects of chronic stress. Endocrinology 145:3754–3762

    Article  PubMed  CAS  Google Scholar 

  24. Higashimoto M, Isoyama N, Ishibashi S, Inoue M, Takiguchi M, Suzuki S, Ohnishi Y, Sato M (2009) Tissue-dependent preventive effect of metallothionein against DNA damage in dyslipidemic mice under repeated stresses of fasting or restraint. Life Sci 84:569–575

    Article  PubMed  CAS  Google Scholar 

  25. Muqbil I, Azmi AS, Banu N (2006) Prior exposure to restraint stress enhances 7,12-dimethylbenz(a)anthracene (DMBA) induced DNA damage in rats. FEBS Lett 580:3995–3999

    Article  PubMed  CAS  Google Scholar 

  26. Olivo-Marston SE, Zhu Y, Lee RY, Cabanes A, Khan G, Zwart A, Wang Y, Clarke R, Hilakivi-Clarke L (2008) Gene signaling pathways mediating the opposite effects of prepubertal low-fat and high-fat n 3 polyunsaturated fatty acid diets on mammary cancer risk. Cancer Prev Res 7:532–545

    Article  Google Scholar 

  27. Douglas L, Varlinskaya E, Spear L (2004) Rewarding properties of social interactions in adolescent and adult male and female rates: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45:153–162

    Article  PubMed  Google Scholar 

  28. Delmas-Beauvieux MC, Peuchant E, Dumon MF, Receveur A, Le Bras M, Clerc M (1995) Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria. Clin Biochem 28:63–169

    Article  Google Scholar 

  29. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  PubMed  CAS  Google Scholar 

  30. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  31. Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 21:44–52

    Article  Google Scholar 

  32. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  33. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Rye JC, Sasaki YF (2000) Single cell gel/comet assay. Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  PubMed  CAS  Google Scholar 

  34. Collins A, Dusinská M, Franklin M, Somoroviská M, Petrovská H, Duthies S, Fillion LP, Panayiotidis M, Raslová K, Vaughan N (1997) Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen 30:139–146

    Article  PubMed  CAS  Google Scholar 

  35. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMX rosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry 61:162–169

    Article  PubMed  CAS  Google Scholar 

  36. Khanal G, Chung K, Solis-Wever X, Johnsos B, Pappas O (2001) Ischemia/reperfusion injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis device. Analyst 36:19–26

    Google Scholar 

  37. Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin RT, Lemasters JJ (2009) Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 5:1099–1106

    Article  PubMed  CAS  Google Scholar 

  38. Weis SN, Pettenuzzo LF, Krolow R, Valentim LM, Mota CS, Dalmaz C (2012) Neonatal hypoxia-ischemia induces sex-related changes in rat brain mitochondria. Mitochondrion 12:271–279

    Article  PubMed  CAS  Google Scholar 

  39. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    Article  PubMed  CAS  Google Scholar 

  40. Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Minnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 28:35–51

    Article  Google Scholar 

  41. Schapira AH, Mann VM, Cooper JM (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145

    Article  PubMed  CAS  Google Scholar 

  42. Boersma AW, Nooter K, Oostrum RG, Stoter G (1996) Quantification of apoptotic cells with fluorescein isothiocyanate-labeled annexin V in chinese hamster ovary cell cultures treated with cisplatin. Cytometry 24:123–130

    Article  PubMed  CAS  Google Scholar 

  43. Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D (1995) Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood 85:532–540

    PubMed  CAS  Google Scholar 

  44. Martin SJ, Reutelingsperger CP, Mcgahon AJ, Rader JA, van Schie RC, La Face DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  PubMed  CAS  Google Scholar 

  45. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  46. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  47. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  48. Metodiewa D, Kóska C (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233

    Article  PubMed  CAS  Google Scholar 

  49. Olanow CW (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32:S2–S9

    Article  PubMed  CAS  Google Scholar 

  50. Holley AK, Dhar SK, Xu Y, St. Clair DK (2010) Manganese superoxide dismutase: beyond life and death. Amino Acids 42:139–158

    Article  PubMed  Google Scholar 

  51. Chakraborti A, Gulati K, Ray A (2008) Age related differences in stress-induced neurobehavioral responses in rats. Modulation by antioxidants and nitrergic agents. Behav Brain Res 194:86–91

    Article  PubMed  CAS  Google Scholar 

  52. Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429

    Article  PubMed  CAS  Google Scholar 

  53. Ward PA, Till GO (1990) Pathophysiologic events related to thermal injury of skin. J Trauma 30:S75–S79

    Article  PubMed  CAS  Google Scholar 

  54. El-Khamisy SF, Caldecott KW (2006) TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 21:219–224

    Article  PubMed  CAS  Google Scholar 

  55. Liu B, Chen Y, St. Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44:1529–1535

    Article  PubMed  CAS  Google Scholar 

  56. Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129

    Article  PubMed  CAS  Google Scholar 

  57. Baisch H, Bollmann H, Bornkessel S (1999) Degradation of apoptic cells and fragments in HL60 suspension cultures after induction of apoptosis by camptothecin and ethanol. Cell Prolif 32:303–319

    Article  PubMed  CAS  Google Scholar 

  58. Brendler-Schwaab S, Hartmann A, Pfuhler S, Speit G (2005) The in vivo comet assay: use and status in genotoxicity testing. Mutagenesis 20:245–254

    Article  PubMed  CAS  Google Scholar 

  59. Krolow R, Noschang CG, Arcego D, Andreazza AC, Peres W, Gonçalves CA, Dalmaz C (2010) Consumption of a palatable diet by chronically stressed rats prevents effects on anxiety-like behavior but increases oxidative stress in a sex-specific manner. Appetite 55:108–116

    Article  PubMed  CAS  Google Scholar 

  60. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  61. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–224

    Article  CAS  Google Scholar 

  62. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  63. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99

    Article  PubMed  CAS  Google Scholar 

  64. Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14:1437–1448

    Article  PubMed  CAS  Google Scholar 

  65. Mancini M, Sedghinasab M, Knowlton K, Tam A, Hockenbery D, Anderson BO (1998) Flow cytometric measurement of mitochondrial mass and function: a novel method for assessing chemoresistance. Ann Surg Oncol 5:287–295

    Article  PubMed  CAS  Google Scholar 

  66. Mahyar-Roemer M, Katsen A, Mestres P, Roemer K (2001) Resveratrol induces colon tumor cell apoptosis independently of p53 and precede by epithelial differentiation, mitochondrial proliferation and membrane potential collapse. Int J Cancer 94:615–622

    Article  PubMed  CAS  Google Scholar 

  67. Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, Loyens A, Beauvillain JC, Bailly C (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23:7018–7030

    Article  PubMed  CAS  Google Scholar 

  68. Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP (2000) Changes in mitochondrial membrane potential during staurosporine induced apoptosis in Jurkat cells. FEBS Lett 475:267–272

    Article  PubMed  CAS  Google Scholar 

  69. Gottlieb E, Vander Heiden MG, Thompson CB (2000) Bcl-xL prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20:5680–5689

    Article  PubMed  CAS  Google Scholar 

  70. Ortega-Camarillo C, Guzman-Grenfell AM, García-Macedo R, Rosales-Torres AM, Avalos-Rodrıguez A, Duran-Reyes G, Medina-Navarro G, Cruz M, Dıaz-Flores M, Kumate J (2006) Hyperglycemia induces apoptosis and p53 mobilization to mitochondria in RINm5F cells. Mol Cell Biochem 281:163–171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support: National Research Council of Brazil (CNPq), and PRONEX-FAPERGS/CNPq 10/0018.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Krolow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krolow, R., Noschang, C., Arcego, D.M. et al. Isolation Stress Exposure and Consumption of Palatable Diet During the Prepubertal Period Leads to Cellular Changes in the Hippocampus. Neurochem Res 38, 262–272 (2013). https://doi.org/10.1007/s11064-012-0915-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0915-x

Keywords

Navigation