Skip to main content
Log in

Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neurologic disorders. An overview

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed under physiological conditions in the human body and are removed by cellular antioxidant defense systems. During oxidative stress their increased formation leads to tissue damage and cell death. This process may be especially important in the central nervous system (CNS) which is vulnerable to ROS and RNS damage as the result of high O2 consumption, high lipid content and the relatively low antioxidant defenses in brain, compared with other tissues.

Recently there has been an increased number of reports suggesting the involvement of free radicals and their non-radical derivatives in a variety of pathological events and multistage disorders including neurotoxicity, apoptotic death of neurons, and neural disorders: Alzheimer’s (AD), Parkinson’s disease (PD) and schizophrenia. Taking into consideration the basic molecular chemistry of ROS and RNS, their overall generation and location, in order to control or supress their action it is essential to understand the fundamental aspects of this problem. In this presentation we review and summarize the basics of all the recently known and important properties, mechanisms, molecular targets, possible involvement in cellular (neural) degeneration and apoptotic death and in pathogenesis of AD, PD and schizophrenia.

The aim of this article is to provide an overview of our current knowledge of this problem and to inspire experimental strategies for the evaluation of optimum innovative therapeutic trials. Another purpose of this work is to shed some light on one of the most exciting recent advances in our understanding of the CNS: the realisation that RNS pathway is highly relevant to normal brain metabolism and to neurologic disorders as well. The interactions of RNS and ROS, their interconversions and the ratio of RNS/ROS could be an important neural tissue injury mechanism(s) involved into etiology and pathogenesis of AD, PD and schizophrenia.

It might be possible to direct therapeutic efforts at oxidative events in the pathway of neuronal degeneration and apoptotic death. From reviewed data, no single substance can be recommended for use in human studies. Some of the recent therapeutic strategies and neuroprotective trials need further development particularly those of antioxidants enhancement. Such an approach should also consider using combinations of radical(s) scavengers rather than a single substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Abdalla, D.S.P., Monteiro, H.P., Oliveira, J.A.C. and Bechara, E.J. (1986) Activities of superoxide dismutase and glutathione peroxidase in schozofrenic and manicdepressive patients.Clin. Chem. 32, 805–807.

    PubMed  CAS  Google Scholar 

  • Allen, A.O. and Bielski, B.H.J. (1982) Formation and disapearance of superoxide radicals in aqueous solutions. In Oberley, L.W. (Ed.),Superoxide Dismutase (CRC Press, Boca Raton), pp. 125–141.

    Google Scholar 

  • Alzheimer, A. (1907) Uber eine eigenartige Erkrankung der Himride.Allg. A. Psychiatr. 64, 146–148.

    Google Scholar 

  • Baksi, K. (1996) Hydroxyl radical formation during apoptosis induced by 2’-methyl-MPTP in PC12 cells.FASEB J. 10, A 1089.

    Google Scholar 

  • Balazy, M., Kaminski, P.M., Mao, K.Y., Tan, J.Z. and Wolin, M.S. (1998) S-nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.J. Biol. Chem. 273, 32009–32015.

    Article  PubMed  CAS  Google Scholar 

  • Barclay, L.R.C., Locce, S.J. and MacVeil, J.M. (1985) Antioxidation in micelles.Can. J. Chem. 63, 366–374.

    Article  CAS  Google Scholar 

  • Bartlett, D., Church, D.F., Bounds, PL. and Koppenol, W.H. (1995) The kinetics of the oxidation of L-ascorbic acid by peroxynitrite.Free Rad. Biol Med. 18, 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J.S. (1991) The double edged role of nitric oxide in brain function and superoxide-mediated injury.J. Dev. Physiol. 15, 53–59.

    PubMed  CAS  Google Scholar 

  • Beckman, J.S. and Koppenol, W.H. (1996) Nitric oxide, superoxide and peroxynitrite: the good, the bad and ugly.Amer. J. Physiol. 271, C1424-C1437.

    PubMed  CAS  Google Scholar 

  • Beckman, J.S., Chen, J., Ischiropoulos, H. and Crow, J.B. (1994) Oxidative chemistry of peroxynitrite.Meth. Enzymol. 233, 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Bensaudon, J.C., Mirochnitchenko, O., Inouye, M., Aebischer, P. and Zum, A.D. (1998) Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice.Eur. J. Neurosci. 10, 3231–3236.

    Article  Google Scholar 

  • Bentue-Ferrer, D., Menard, G. and Allain, H. (1996) Monoamine oxidase B inhibitors. Current status and future potential.CNS Drugs 6, 217–236.

    CAS  Google Scholar 

  • Berman, S.B., Zigmond, M.J. and Hastings, T.G. (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine.J. Neurochem. 67, 593–600.

    PubMed  CAS  Google Scholar 

  • Bielski, B.H.J, and Allen, A.O. (1977) Mechanism of the disproportionation of superoxide radicals.J. Phys. Chem. 81, 1048–1050.

    Article  CAS  Google Scholar 

  • Bielski, B.H.J, and Cabelli, D.E. (1991) Highlights of current research involving O2 •- and perhydroxyl radicals in aqueous solution.Int. J. Rad. Biol. 59, 291–319.

    Article  PubMed  CAS  Google Scholar 

  • Bielski, B.H.J., Cabelli, D.E. and Arudi, R.L. (1985) Reactivity of HO2/O•- radicals ion aqueous in solution.J. Phys. Chem. Ref. Data 14, 1041–1100.

    CAS  Google Scholar 

  • Bindoli, A., Rigobello, M.P. and Deeble, D.J. (1992) Biochemical and toxicological properties of the oxidative products of catecholamines.Free Rad. Biol. Med. 13, 391–405.

    Article  PubMed  CAS  Google Scholar 

  • Bors, W., Saran, M., Lengfelder, E., Spoettl, R. and Michel, C. (1974) The relevance of the superoxide anion radical in biological systems.Curr. Top. Radiat. Res. Quart. 9, 247–309.

    CAS  Google Scholar 

  • Bredt, D.S. and Snyder, S.H. (1992) Nitric oxide a novel neuronal messenger.Neuron 8, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A.S., Moro, M.A., Masse, J.M., Cramer, E.M., Radomski, M. and Darley Ushmar, V. (1998) Nitric oxidedependent and independent effects on human platelets treated with peroxynitrite.Cardiovas. Res. 40, 380–388.

    Article  CAS  Google Scholar 

  • Brune, B., Sandau, K. and vonKnethen, A. (1998) Apoptotic cell death and nitric oxide: activating and antagonistic transducing pathways.Biochemistry (Moscow)63, 817–825.

    CAS  Google Scholar 

  • Buettner, G.R., (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, a-tocopherol and ascorbate.Arch. Biochem. Biophys. 300, 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A.R., Flitney, F.W. and Williams, D.L.H. (1995) NO, nitrosonium ions, nitroxide ions, nitrosothiols and ironnitrosyls in biology: a chemist’s perspective.Trends Pharmacol. Sci. 16, 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Butler, J., Hoey, B.M. and Swallow, A.J. (1989) Radiation chemistry. InAnnual Reports C (The Royal Soc. Chem. Cambridge), pp. 49–93.

  • Buttke, T.M. (1994) Oxidative stress as a mediator of apoptosis.Immunol. Today 15, 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Cadet, J.L. and Kahler, L.A. (1994) Free radical mechanisms in schizophrenia and tardive dyskinesia.Neurosci Biobehav. Rev. 18, 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Cadet, J.L. and Lohr, J.B. (1987) Free radicals and the developmental pathobiology of schizophrenic burnout.Integr. Psychiatry 51, 40–48.

    Google Scholar 

  • Candeias, L.P., Foekes, L.K. and Wardman, P. (1995) Is Fenton Chemistry that important? In Harder, D. (Ed.)Congress Lectures, Vol.2, pp. 1–4.

    Google Scholar 

  • Castro, L.A., Robalinho, R.L., Cayota, A., Meneghini, R. and Radi, R. (1998) Nitric oxide and peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts.Arch. Biochem. Biophys. 359, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Sies, H. and Boveris, A. (1979) Hydrogen peroxide metabolism in mammalian organs.Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  • Chiaqui, C.A. and Petkau (1987) Chemical reactivity and biological effects of superoxide radicals.Radiat. Phys. Chem. 30, 365–373.

    Google Scholar 

  • Choi, D.W. (1993) Nitric oxide: foe or friend to the injured brain.Proc. Natl. Acad. Sci. USA 90, 9741–9743.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G. (1983) The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence.J. Neural Transm. 19 (Suppl.) 89–103.

    CAS  Google Scholar 

  • Cohen, G. (1984) Oxyradicals toxicity in catecholamine neurons.Neurotoxicology 5, 77–82.

    PubMed  CAS  Google Scholar 

  • Cohen, G. and Werner, P. (1994) Free radicals, oxidative stress and neurodegeneration. In Calne, D.B. (Ed.),Neurodegenerative Diseases (WB Sanders Co., Philadelphia:), pp. 139–161.

    Google Scholar 

  • Collier, J. and Valance, P. (1991) Physiological importance of nitric oxide.Br. Med. J. 302, 1289–1290.

    Article  CAS  Google Scholar 

  • Collier, J. and Valance, P. (1989) Second messenger role for NO• widens to nervous and immune systems.Trends Pharmacol. Sci. 10, 535–560.

    Article  Google Scholar 

  • Colton, C, Yao, I., Grossman, Y. and Gilbert, D. (1991) The effect of xanthine/xanthine oxidase generated reactive oxygen species on synaptic transmission.Free Rad. Res. Commun. 14, 385–393.

    Article  CAS  Google Scholar 

  • Cook, J.A., Wink, D.A., Blout, V.et al. (1996) Role of antioxidants in the nitric oxide-elicited inhibition of dopamine uptake in mesencephalic neurons. Insight into potential mechanisms of nitric oxide-mediated neurotoxicity.Neurochem. Int. 28, 609–617.

    Article  PubMed  CAS  Google Scholar 

  • Costa, C, Bertazzo, A., Allegri, G.et al. (1992) Melanin biosynthesis from dopamine. II. A mass spectrometric and collisional spectroscopic investigation.Pigment Cell Res. 5, 122–131.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T. (1996) How neurons die.Biol. Psychiatry 39, 611–619.

    Article  Google Scholar 

  • Crapper, M.C., Lachlan, D.R., Dalton, A.J.et al. (1991) Intramuscular desferroxamine in patients with Alzheimer’s disease.Lancet 337, 1304–1308.

    Article  Google Scholar 

  • Czapski, G. and Goldstein, S. (1995) The role of the reactions of NO• with superoxide and oxygen in biological systems: a kinetic approach.Free Rad. Biol. Med. 19, 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Czapski, G., Goldstein, S. and Meyerstein, D. (1988) What is unique about O2 toxicity as compared to other biological reductants.Free Rad. Res. Commun. 4, 231–236.

    Article  CAS  Google Scholar 

  • Darley-Usmar, V, Wisemar, H. and Halliwell, B. (1995) Nitric oxide and oxygen radicals: a question of balance.FEBS Lett. 369, 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, T.M., Bredt, D., Fotuhi, H., Hwang, P.M. and Snyder, S.A. (1991a) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues.Proc. Natl. Acad. Sci. USA 88, 7797–7801.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D. and Snyder, S.H. (1991b) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures.Proc. Natl. Acad. Sci. USA 88, 63–68-63-72.

    Article  Google Scholar 

  • De Groot, H. (1994) Reactive oxygen species in tissue injury.Hepato-Gastroenter. 41, 328–332.

    Google Scholar 

  • Desjardins, P. and Ledoux, S. (1998) The role of apoptosis in neurodegenerative diseases.Metab. Brain Dis. 13, 79–96.

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu, M. (1991) Chemical determination of freeradical induced damage to DNA.Free Rad. Biol. Med. 10, 225–242.

    Article  PubMed  CAS  Google Scholar 

  • Dringen, R. and Hamprecht, B. (1998) Glutathione as indicator for cellular metabolism of astroglial cells.Dev. Neurosci. 20, 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Duke, R.C., Chrvenak, R. and Cohen, J.J. (1983) Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis.Proc. Natl. Acad. Sci. USA 80, 6361–6365.

    Article  PubMed  CAS  Google Scholar 

  • Ehringer, H. and Hornykiewicz, O. (1960) Verteilung vor Noradrenalin und Dopamin (3-hydroxytyramin) in Gehrin des Menschen und ihr Verhalten by Erkrankungen des Extrapyramidalen Systems.Klin. Wochenschr. 38, 1236–1239.

    Article  PubMed  CAS  Google Scholar 

  • Factor, S.A., Sanchez-Ramos, J.R. and Weiner, W. (1990) Vitamin E therapy in Parkinson’s disease.Adv. Neurol. 53, 457–461.

    PubMed  CAS  Google Scholar 

  • Fahn, S. (1989) The endogenous toxin hypothesis in the etiology of Parkinson’s disease and a pilot trial of high dosage antioxidants in an attempt to slow the progression of the illness.Ann. NY Acad. Sci. 570, 186–196.

    Article  PubMed  CAS  Google Scholar 

  • Fahn, S. and Cohen, G. (1992) The oxidant stress hypothesis in Parkison’s disease: evidence supporting it.Ann. Neurol. 32, 804–812.

    Article  PubMed  CAS  Google Scholar 

  • Farhatazizn, N. and Ross, A.B. (1977) NSRDS-NBS 59, U.S. Department of Commerce, Washington, DC.

  • Fee, J.A. and Valentine, J.S. (1977) Chemical and physical properties of superoxide. In Michelson, A.M., McCord, J.M. and Fridovich, I. (Eds.),Superoxide and Superoxide Dismutase (Academic Press, New York), pp. 19–60.

    Google Scholar 

  • Finch, C.E. and Cohen, D.M. (1997) Aging, metabolism and Alzheimer disease: review and hypotheses.Exper. Neurology 143, 82–102.

    Article  CAS  Google Scholar 

  • Finkel, M.S., Laghrissithode, F, Pollock, B.G. and Rong, J. (1996) Paroxetine is a novel nitric oxide inhibitor.Psychofarmacol. Bull. 32, 653–658.

    CAS  Google Scholar 

  • Floyd, R.A. (1993) Basic free radical biochemistry. In Yu, B.P. (Ed.),Free Radicals in Aging (CRC Press, Inc., Boca Raton), pp. 39–55.

    Google Scholar 

  • Foote, C.S., Shook, F.C. and Abakerli, R.B. (1984) Characterization of singlet oxygen.Meth. Enzymol. 105, 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich, I. (1978) The biology of oxygen radicals.Science 201, 875–880.

    Article  PubMed  CAS  Google Scholar 

  • Fu, S., Gebicki, S., Jessup, W., Gebicki, J.M. and Dean, R.T. (1995) Biological fate of amino acid, peptide and protein hydroperoxides.Biochem. J. 311, 821–827.

    PubMed  CAS  Google Scholar 

  • Fu, W.M., Luo, H., Parthasarathy, S. and Mattson, M.P (1998) Catecholamines potentiate amyloid-peptide neurotoxicity: involvement of oxidative stress.Neurobiol. Dis. 5, 229–243.

    Article  PubMed  CAS  Google Scholar 

  • Gabbita, S.P, Lovell, M.A. and Markesbery, W.R. (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease.J. Neurochem. 71, 2034–2040.

    PubMed  CAS  Google Scholar 

  • Gardner, A.M., Xu, F.-H., Fady, C, Jakoby, F.J., Duffey, D.C., Tu, Y and Lichtenstein, A. (1997) Apoptotic vs nonapoptotic cytotoxicity induced by hydrogen peroxide.Free Rad. Biol. Med. 22, 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Gartwaite, J. (1991) Glutamate, nitric oxide and cell-signaling in the nervous system.Trends Neurosci. 14, 60–67.

    Article  Google Scholar 

  • Garvey, E.P., Oplinger, J., Furfine, E.S.et al. (1997) 1400 W is a slow, tight binding and highly selective inhibitor of inducible nitric oxide synthasein vitro and in vivo. J. Biol. Client.272, 4959–4963.

    CAS  Google Scholar 

  • Gibson, A. and Lilley, E. (1997) Superoxide anions, free radical scavengers and nitrergic neurotransmission.Review. Gen. Pharmacol. 28, 490–493.

    Google Scholar 

  • Gibson, A., Babbedge, R., Brave, S.R.et al. (1992). An investigation of some S-nitrosothiols and of hydroxy-arginine on the mouse anococcygeus.Br. J. Pharmacol. 107, 715–721.

    PubMed  CAS  Google Scholar 

  • Gieseg, S.P., Simpson, J.A., Charlton, T.S., Duncan, M.W. and Dean, R.T. (1993) Protein-bound, 3-4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins.Biochemistry 32, 4780–4786.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S. and Czapski, G. (1995) The reaction of NO with O2 and H2: a pulse radiolysis studies.Free Rad. Biol. Med. 19, 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S., Squadrito, G.L., Pryor, W.A. and Czapski, G. (1996) Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical.Free Rad. Biol. Med. 21, 965–974.

    Article  PubMed  CAS  Google Scholar 

  • Good, P.F., Werner, P., Hsu, A., Olanow, C.W. and Perl, D.P (1996) Evidence for neuronal oxidative damage in Alzheimer’s disease.Am. J. Pathol. 149, 21–28.

    PubMed  CAS  Google Scholar 

  • Greenlund, L.J.S., Deckwert, T.L. and Johnson Jr., E.M. (1995) SOD delayes neuronal apoptosis: a role of reactive oxygen species in programmed neuronal death.Neuron 14, 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Greenstock, C.L. (1984) Oxy-radicals and the radiobiological oxygen effect.Israel J. Chem. 24, 1–10.

    CAS  Google Scholar 

  • Gsell, W., Conrad, R., Hickethier, M. et al. (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type.J. Neurochem. 64, 1216–1223.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke?Acta Neurol. Scand. 126, 23–33.

    Article  CAS  Google Scholar 

  • Halliwell, B. (1992) Reactive oxygen species and the central nervous system.J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (1995) Antioxidant characterization. Methodology and mechanism.Biochem. Pharmac. 49, 1341–1348.

    Article  CAS  Google Scholar 

  • Halliwell, B. (1996) Commentary. Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans.Free Rad. Res. 25, 57–74.

    Article  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M. (1986) Oxygen free radical and iron in relation to biology and medicine: some problems and conception.Arch. Biochem. Biophys. 246, 501–514.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, T.G. (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthetase.J. Neurochem. 64, 919–924.

    Article  PubMed  CAS  Google Scholar 

  • Heinzel, B., John, M., Klaft, P., Bohne, E. and Mayer, B. (1992) Ca2+ calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase.Biochem. J. 281, 627–630.

    PubMed  CAS  Google Scholar 

  • Helberg, C.B., Boggs, S.E. and Lapetina, E.G. (1998) Phosphatidylinositol 3-kinase is a target for protein tyrosine nitration.Biochem. Biophys. Res. Comm. 252, 313–317.

    Article  Google Scholar 

  • Hensley, K., Madit, M.L., Yu, Z.Q., Sang, H., Markesbery, W.R. and Floyd, R.A. (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation.J. Neurosci 18, 8126–8132.

    PubMed  CAS  Google Scholar 

  • Herold, S. (1998) Kinetic and spectroscopic characterization of an intermediate peroxynitrite complex in the nitrogen monoxide induced oxidation of oxyhemoglobin.FEBS Lett. 439, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E.C. (1993) Does oxidative stress participate in nerve cell death in Parkinson’s disease.Eur. Neurol. 33 (Suppl. 1), 52–59.

    Article  PubMed  Google Scholar 

  • Hirsch, E.C, Graybiel, A.M. and Agid, Y. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease.Nature 334, 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E.C, Hunot, S., Damier, P. and Faucheux, B. (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration?Ann. Neurol. 44, S115-S120.

    PubMed  CAS  Google Scholar 

  • Hochman, A., Sternin, H., Gorodin, S., Korsmeyer, S., Ziv, I., Melamed, E. and Offen, D. (1998) Enhanced oxidative stress and altered antioxidants in brains of Bcl-2 deficient mice.J. Neurochem. 71, 741–748.

    PubMed  CAS  Google Scholar 

  • Hockenbery, D.M., Nunez, G., Millman, C, Schreiber, R.D. and Korsmeyer, S.J. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death.Nature (London)348, 334–336.

    Article  CAS  Google Scholar 

  • Hockenbery, D.M., Oltavai, Z.N., Yin, X.-M, Millman, C.L. and Korsmeyer, S.J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Cell 75, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Hogg, N. and Kalyanaraman, B. (1998) Nitric oxide and low-density lipoprotein oxidation.Free Rad. Res. 28, 593–600.

    Article  CAS  Google Scholar 

  • Hogg, N., Singh, R.J., Joseph, J., Neese, F. and Kalyanaraman, B. (1995) Reactions of nitric oxide with nitronyl nitroxides and oxygen: prediction of nitrite and nitrate formation by kinetic simulation.Free Rad. Res. 22, 47–56.

    Article  CAS  Google Scholar 

  • Hoyer, S. (1993) Brain oxidative energy and related metabolism, neuronal stress and Alzheimer’s disease. A speculative synthesis.J. Geriatr. Psych. Neurol. 6, 3–13.

    CAS  Google Scholar 

  • Huggins, T.G., Wells-Knecht, M.C., Detoire, N.A.et al. (1993) Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation.J. Biol. Chem. 268, 12341–12347.

    PubMed  CAS  Google Scholar 

  • Hutchins, J.B. and Barger, J.B. (1998) Why neurons die: cell death in the nervous system.Anatom. Rec. 253, 79–90.

    Article  CAS  Google Scholar 

  • Ignarro, L.J. (1996) Physiology and pathophysiology of nitric oxide.Kidney Int. suppl. 55, S2-S5.

    PubMed  CAS  Google Scholar 

  • Imlay, J.A., Chin, S.M. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fentonin vivo andin vitro. Science240, 640–642.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, Y.A. and Linn, S. (1988) DNA damage and oxygen radical toxicity.Science 240, 1302–1304.

    Article  PubMed  CAS  Google Scholar 

  • Iravani, M.M., Millar, J. and Kruk, Z.L. (1998) Differential release of dopamine by nitric oxide in subregions of rat caudate putamen slices.J. Neurochem. 71, 1969–1977.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos, A., Beers, M.F., Ohnishi, S.T., Fisher, D., Garner, S.E. and Thorn, S.R. (1996) Nitric oxide production and perivascular tyrosine nitration in brain after carbon monoxide poisoning in the rat.J. Clin. Invest. 97, 2260–2267.

    Article  PubMed  CAS  Google Scholar 

  • Itzhak, Y. and Ali, S.F. (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole.J. Neurochem. 67, 1770–1773.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. and Olanow, C.W. (1996) Oxidative stress and pathogenesis of Parkinson’s disease.Neurology 17, 161–170.

    Google Scholar 

  • Jenner, P. and Olanow, C.W. (1998) Understanding cell death in Parkinson’s disease.Ann. Neurol. 44, S72-S84.

    PubMed  CAS  Google Scholar 

  • Jesaitis, A.J., Quinn, M.T., Mukhergee, G., Ward, PA. and Dratz, E.A. (1991) Death by oxygen: radical views.N. Biologist 3, 651–659.

    CAS  Google Scholar 

  • Jin, F., Leitich, J. and von Sonntag, C. (1993) The superoxide radical reacts with tyrosine-derived phenoxyl radical by addition rather than by electron transfer.J. Chem. Soc. Perkin Trans. 2, 1583–1588.

    Google Scholar 

  • Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Ord, T. and Bredesen, D.E. (1993) Bcl-2 inhibition of neural death: decreased generation of ROS.Science 262, 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  • Kanner, J., Harel, S. and Grant, R. (1991) Nitric oxide as an antioxidant.Arch. Biochem. Biophys. 289, 130–136.

    Article  PubMed  CAS  Google Scholar 

  • Kashiba-Iwatsuki, M., Kitoh, K., Kasahara, E., Yu, H., Nisikawa, M., Matsuo, M. and Inoue, M. (1997) Ascorbic acid and reducing agents regulate the fates and functions of S-nitrosothiols.J. Biochem. 122, 1208–1214.

    PubMed  CAS  Google Scholar 

  • Kearns, D.R. (1971) Physical and chemical properties of singlet molecular oxygen.Chem. Res. 71, 395–427.

    CAS  Google Scholar 

  • Khan, A.U. and Wilson, T. (1995) Oxygen radicals acting as chemical messenger.Chem. Biol. 2, 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Kharitonov, V.G., Sundaquist, A.R. and Sharma, VS. (1994) Kinetic of nitric oxide autoxidation in aqueous solution.J. Biol. Chem. 269, 5881–5883.

    PubMed  CAS  Google Scholar 

  • Kharitonov, V.G., Sundquist, A.R. and Sharma, VS. (1995) Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen.J. Biol. Chem. 270, 28158–28164.

    Article  PubMed  CAS  Google Scholar 

  • Kish, S.J., Morito, C. and Hornykieiwcz, O. (1985) Glutathione peroxidase activity in PD brain.Neurosci Lett. 58, 343–345.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, R.G., Palacious, M., Palmer, R.M.J, and Moncada, S. (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of soluble guanylate cyclase.Proc. Natl. Acad. Sci. USA86, 51–59.

    Article  Google Scholar 

  • Kooy, N.W. and Lewis, S.J. (1996) Nitrotyrosine attenuates the hemodynamic effect of adrenoreceptor agonistsin vivo: relevance to the pathophysiology of peroxynitrite.Eur. J. Pharmacol. 310, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Landsberg, C.R. and Vollgraf, U. (1998) Mode of cell injury and death after hydrogen peroxide exposure in cultured oligodendroglia cells.Exp. Cell Res. 244, 218–229.

    Article  Google Scholar 

  • Lange, K.W., Youdim, M.B.H. and Riederer, P. (1992) Neurotoxicity and neuroprotection in Parkinson’s disease.J. Neural Transm. 38 (Suppl.), 27–44.

    CAS  Google Scholar 

  • Leist, M., Volbracht, C, Fava, E. and Nicotera, P. (1998) l-methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation and neuronal apoptosis.Mol. Pharmacol. 54, 789–801.

    PubMed  CAS  Google Scholar 

  • Lenaz, G. (1998) Role of mitochondria in oxidative stress and ageing.Biochim. Biophys. Acta 1366, 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Leonardo, M.J. and Baltimore, D. (1989) NF-kB: a pleiotropic mediator of inducible and tissue-specific gene control.Cell 42, 227–229.

    Article  Google Scholar 

  • Liochev, S. and Fridovich, J. (1994) The role of O2 in the production of HO:in vitro and in vivo. Free Rad. Biol. Med.16, 29–33.

    Article  PubMed  CAS  Google Scholar 

  • Lippe, G., Comelli, M., Mazzilis, D., Sala, F.D. and Mavelli, J. (1991) The inactivation of mitochondrial F1 ATPase by H202 is mediated by iron ions not tightly bound in the protein.Biochem. Biophys. Res. Commun. 181, 764–769.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A., Choi, Y.-B., Pan, Z.-H., Lei, S.Z.et al. (1993) A redox — based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds.Nature (London)364, 626–632.

    Article  CAS  Google Scholar 

  • Lloyd, R.V., Hanna, P.M. and Mason, R.P (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction.Free Rad. Biol. Med. 22, 885–888.

    Article  PubMed  CAS  Google Scholar 

  • Logager, T. and Sehested, K. (1993) Formation and decay of peroxynitric acid: a pulse radiolysis study.J. Phys. Chem. 97, 10047–10052.

    Article  Google Scholar 

  • Lohr, J.B. (1991) Oxygen radicals and neuropsychiatria illness. Some speculations.Arch. Gen. Psychiatry 48, 1097–1106.

    PubMed  CAS  Google Scholar 

  • Lohr, J.B. and Browning, J. A. (1995) Free radical involvement in neuropsychiatric illness.Psychopharm. Bull. 31, 159–165.

    CAS  Google Scholar 

  • Lonnrot, K., Metsa-Ketala, T., Molnar, G.et al. (1996) The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity.Free Rad. Biol. Med. 21, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, M.A., Ehmann, W.D., Butler, S.M. and Markesbery, W.R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease.Neurology,55, 342–345.

    Google Scholar 

  • Maeda, H. and Akaike, T. (1998) Nitric oxide and oxygen radicals in infection, inflammation and cancer.Biochemistry (Moscow)63, 854–865.

    CAS  Google Scholar 

  • Mahadik, S.P. and Mukherjee, S. (1996) Free radical pathology and antioxidant defense in schizophrenia: a review.Schizophrenia Res. 19, 1–17.

    Article  CAS  Google Scholar 

  • Malyshev, I.Y. and Manukhina, E.B. (1998) Stress, adaptation and nitric oxide.Biochemistry (Moscow)63, 840–853.

    CAS  Google Scholar 

  • Marcetti, P., Decaudin, D., Macho, A., Zamzami, N., Hirsch, T., Susin, S.A. and Kroemer, G. (1997) Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function.Eur. J. Immunol. 27, 289–296.

    Article  Google Scholar 

  • Maren, S. (1998) Effects of 7-nitrozole, a neural nitric oxide synthase (nNOS) inhibitor, on locomotor activity and contextual fear conditioning in rats.Brain Res. 804, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Markesbery, W.R. (1997) Oxidative stress hypothesis in Alzheimer’s disease.Free Rad. Biol. Med. 23, 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Matkovics, B., Varga, J. Sz., Hai Do, Quy and Fekete, E. (1996) Nitric oxide (NO): a new, but nowadays very popular free radical.Curr. Topics Biophys. 20 (Suppl.), 102–106.

    Google Scholar 

  • Mattammal, M.B., Strong, R., Laksmi, V.M.et al. (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease.J. Neurochem. 64, 1645–1654.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P., Keller, J.N. and Begley, J.G. (1998) Evidence for synaptic apoptosis.Exper. Neurol. 153, 35–48.

    Article  CAS  Google Scholar 

  • Mecocci, P., Cherubini, A., Polidori, M.C., Cecchetti, R., Chionne, F. and Senin, U. (1998) Oxidative stress and lymphocytes in Alzheimer disease.Arch. Geront. Geriatrics (Suppl. 6), 313–316.

    Google Scholar 

  • Menconi, M.J., Unno, N., Smith, M., Aquirre, D.E. and Fink, M.P. (1998) Nitric oxide donor-induced hypermeability of cultured intestinal epithelial monolayers: role of superoxide radical, hydroxyl radical and peroxynitrite.Biochim. Biophys. Acta 1425, 189–203.

    PubMed  CAS  Google Scholar 

  • Merad Boudia, M., Nicole, A., Santiard Baron, D., Saille, C. and Ceballos, P.I. (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease.Biochem. Pharmacol. 56, 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Metodiewa, D. (1998) Molecular mechanisms of cellular injury produced by neurotoxic amino acids that generate reactive oxygen species.Amino Acids 14, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Metodiewa, D. and Dunford, H.B. (1993) Medical aspects and techniques for peroxidases and catalases. In Scott, G. (Ed.),Atmospheric Oxidation and Antioxidants (Elsevier, Amsterdam), pp. 287–232.

    Google Scholar 

  • Miller, D.M., Buetner, G.R. and Aust, S.D. (1990) Transition metals as catalyst of ‘autoxidation’ reactions.Free Rad. Biol. Med. 8, 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Minotti, G. and Aust, S.D. (1987) The requirement for iron(III) in the initiation of lipid peroxidation by iron(II) and hydrogen peroxide.J. Biol. Chem. 262, 1098–1104.

    PubMed  CAS  Google Scholar 

  • Mizuno, Y, Hattori, N. and Matsumine, H. (1998) Neurochemical and neurogenetic correlates of Parkinson’s disease.J. Neurochem. 71, 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Mohanakumar, K.P., Hanbauer, I. and Chiueh, C.C. (1998) Neuroprotection by nitric oxide against hydroxyl radical-induced nigral neurotoxicity.J. Chem. Neuroanatomy 14, 195–205.

    Article  CAS  Google Scholar 

  • Mollina, Y, Vedia, L., McDonald, B., Reep, B., Brune, B., Di Silvio, M., Milliar, T.R. and Lapetina, E.G. (1992) Nitric oxide-induced A-nitrosylation of glyceraldehyde-3-phos-phate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation.J. Biol. Chem. 267, 24929–24932.

    Google Scholar 

  • Moore, P.K., Oluyomi, A.O., Babbedge, R.C., Wallace, P. and Hart, S.L. (1991) L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse.Br. J. Pharmacol. 102, 198–202.

    PubMed  CAS  Google Scholar 

  • Napolitano, A., Pezzella, A., Misuraca, G. and Prota, G. (1998) New directions in Parkinson’s research and treatment.Expert Opinion in Ther. Patents 8, 1251–1268.

    Article  CAS  Google Scholar 

  • Neta, P., Huie, R.E. and Ross, A.B. (1990) Rate constant for reactions of peroxyl radicals in fluid solutions.J. Phys. Chem. ReJ. Data 19, 413–513.

    Article  CAS  Google Scholar 

  • Niki, E. (1988) Active oxygen, free radicals and peroxidation. In Tsuchiya, M.et al. (Eds.),Free Radicals in Digestive Diseases (Elsevier Sci. Publisher. B.V., Biomedical Division), pp. 15–25.

    Google Scholar 

  • Offen, D., Ziv, J., Sternin, H.et al. (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease.Exp. Neurol. 141, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Okada, S. (1996) Iron-induced tissue damage and cancer: the role of reactive oxygen species — free radicals.Pathol. Int. 46, 311–332.

    Article  PubMed  CAS  Google Scholar 

  • Olanow, C.W. (1993) A radical hypothesis for neurodegeneration.Trends in Neurosci.16, 439–444.

    Article  CAS  Google Scholar 

  • Olney, J.W. and Farber, N.B. (1995) Glutamate receptor dysfunction an schizophrenia.Arch. Gen. Psychiatry 52, 998–1007.

    PubMed  CAS  Google Scholar 

  • Pardo, C.V., DelRio, M.J. and Lopera, F. (1998) Familiae Alzheimer’s disease: oxidative stress, beta amyloid, presenilins and cell death.General Pharmac.31, 675–681.

    Google Scholar 

  • Parkinson Study Group (1993) Effect of deprenyl and tocopherol on the progression of disability in early Parkinson’s disease.N. Engl. J. Med. 328, 176–183.

    Article  Google Scholar 

  • Pasinetti, G.M. (1998) Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions.J. Neurosci. Res. 54, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Pasquet, J.P.E.E., Zou, M.H. and Ulrich, V. (1996) Peroxynitrite inhibition of nitric oxide synthases.Biochimie 78, 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, S. and Mayer, B. (1998) Lack of tyrosine nitration by peroxynitrite generated at physiological pH.J. Biol. Chem. 273, 27280–27285.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, S., Gorren, A.C.F., Schmidt, K., Werner, E.R., Hansert, B., Bohle, D.S. and Mayer, B. (1997) Metabolic fate of peroxynitrite in aqueous solution. Reaction with nitrogen oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry.J. Biol. Chem. 272, 3465–3470.

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter, J., Eberhardt, W., Himmel, R.et al. (1996) Therapeutic strategies for the inhibition of inducible nitric oxide synthase. Potential for a novel class of anti-inflammatory agents.Cell Biol. Int. 20, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Philbert, M.A., Waters, D.K. and Lownders, H.E. (1990) Cellular distribution of GSH in the nervous system.Free Rad. Biol. Med. 9, 20–24.

    Article  Google Scholar 

  • Pichorner, H., Metodiewa, D. and Winterbourn, C.C. (1995) Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.Arch. Biochem. Biophys. 323, 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Pogun, S., Baumann, M.H. and Kuhar, M.J. (1994) Nitric oxide inhibits [3H] dopamine uptake.Brain Res. 641, 81–91.

    Article  Google Scholar 

  • Powchik, P., Davidson, M., Haroutunian, V., Gabriel, S.M.et al., (1998) Postmortem studies in schizophrenia.Schizophrenia Bull. 24, 325–341.

    CAS  Google Scholar 

  • Pryor, W.A. (1986) Oxy radicals and related species: their formation, lifetimes and reactions.Ann. Rev. Physiol. 48, 657–667.

    Article  CAS  Google Scholar 

  • Rabinovic, A.D. and Hastings, T.G. (1998) Role of endogenous glutathione in the oxidation of dopamine.J. Neurochem. 71, 2071–2078.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., Beckamn, J.S., Bush, K.M. and Freeman, B.A. (1991) Peroxynitrite-induced membrane peroxidation: the cytotoxic potential of superoxide and nitric oxide.Arch. Biochem. Biophys. 288, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., Beckman, J.S., Bush, K.M. and Freeman, B.A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide.J. Biol. Chem. 266, 4244–4250.

    PubMed  CAS  Google Scholar 

  • Rauhala, P., Khaldi, A., Mohanakumar, K.P. and Chiuech, C.C. (1998a) Apparent role of hydroxyl radicals in oxidative brain injury induced by sodium nitroprusside.Free Rad. Biol. Med. 24, 1065–1073.

    Article  PubMed  CAS  Google Scholar 

  • Rauhala, P., Lin, A.M.-Y. and Chiueh, C.C. (1998b) Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress.FASEB J. 165–173.

  • Rauhala, P., Sziraki, I. and Chiueh, C.C. (1996) Peroxidation of brain lipids in vitro: nitric oxide versus hydroxyl radical.Free Rad. Biol. Med. 21, 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, R.D. and Yao, J.K. (1996) Free radical pathology in schizophrenia: a review.Prostagi. Leu. Essent. Fatty Acids 55, 33–43.

    Article  CAS  Google Scholar 

  • Reddy, R.D., Sahebarao, MR, Mukherjee, S.et al. (1991) Enzymes of the antioxidant defense system in chronic schizophrenia patients. Biol.Psychiatry 30, 409–412.

    CAS  Google Scholar 

  • Rich, J.B., Rasmusson, D.X., Folstein, M.F.et al. (1995) Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease.Neurology 45, 51–55.

    PubMed  CAS  Google Scholar 

  • Richardson, J.S. (1993) Free radicals in the genesis of Alzheimer’s disease.Ann. NY Acad. Sci. 695, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Riley, PA. (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation.Int. J. Rad. Biol. 65, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Romero, F.J., Morell, B.F, Romero, M.J., Jareno, E.J., Romero, B., Marin, N. and Roma, J. (1998) Lipid peroxidation products and antioxidants in human disease.Environ. Health Perspect. 106 (Suppl. 5), 1229–1234.

    Article  PubMed  CAS  Google Scholar 

  • Roots, R. and Okada, S. (1975) Estimator of life times and diffusion distances of radicals involved in X-ray induced DNA strand breaks of killing of mammalian cells.Radiat. Res. 64, 306–320.

    Article  PubMed  CAS  Google Scholar 

  • Ross, A.B., Mallard, W.G., Hellman, W.P., Bielski, B.H.J, and Buxton, G.V. (1992) NDRL — NIST Solution Kinetic Database Ver 1, Nat. Inst. Standards Technol., Gattesburg, MD, USA.

  • Rothstein, J.D., Bristol, L.A., Hosier, B.et al. (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons.Proc. Natl. Acad. Sci. USA 91, 4155–4159.

    Article  PubMed  CAS  Google Scholar 

  • Rubbo, H., Radi, M., Trujillo, M.et al. (1994). Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation.J. Biol. Chem. 269, 26066–26075.

    PubMed  CAS  Google Scholar 

  • Saggu, H., Cooksey, J., Dexter, D.et al. (1989) A selective increase in particulate SOD activity in Parkinsonian substantia nigra.J. Neurochem. 53, 692–697.

    Article  PubMed  CAS  Google Scholar 

  • Salvemini, D. and Masferrer, J.L. (1996) Interactions of nitric oxide with cyclooxygenase:in vitro, ex vivo andin vivo studies.Meth. Enzymol. 269, 12–25.

    Article  PubMed  CAS  Google Scholar 

  • Samuni, A., Aronovich, I., Godinger, D., Chevion, M. and Czapski, G. (1983) On the toxicity of vitamin C and metal ions: A site specific Fenton mechanism.Eur. J. Biochem. 137, 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Saran, M. and Bors, W. (1990) Radical reactionsin vivo — an overview.Radiat. Environ. Biophys. 29, 249–262.

    Article  PubMed  CAS  Google Scholar 

  • Saran, M. and Bors, W. (1989) Oxygen radicals acting as chemical messengers: a hypothesis.Free Rad. Res. Commun. 7, 213–220.

    Article  CAS  Google Scholar 

  • Saran, M., Michel, C. and Bors, W. (1988) Reactivities of free radicals. In Schulte-Hostede, S., Darrall, N.M., Blank, L.W. and Wellburn, A.R. (Eds.)Air Pollution and Plant Metabolism (Elsevier Appl. Sci., London), pp. 76–93.

    Google Scholar 

  • Sawyer, D.T. and Valentine, J.S. (1981) How super is superoxide?Ace. Chem. Res. 14, 393–400.

    Article  CAS  Google Scholar 

  • Scharfstein, J.S., Keaney, J.F., Slivka, A., Welch, G.N.et al. (1994)In vivo transfer of nitric oxide between a plasma-protein bound reservoir of low-molecular weight thiols.J. Clin. Invest. 94, 1432–1439.

    Article  PubMed  CAS  Google Scholar 

  • Schreck, R.K., Alberman, K. and Bauerle, PA. (1992) Nuclear factor kappaB and oxidative stress-responsive transcription factor of eucaryotic cells: a review.Free Rad. Res. Commun. 17, 221–237.

    Article  CAS  Google Scholar 

  • Searle, J., Kerr, J.F.R. and Bishop, C.J. (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance.Pathol Annu. 17, 229–259.

    PubMed  Google Scholar 

  • Segura-Aguilar, J., Metodiewa, D. and Welch, C. (1998) Metabolic activation of dopamineo-quinones too-semiqui-none by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects.Biochim. Biophys. Acta 1381, 1–6.

    PubMed  CAS  Google Scholar 

  • Shapira, A.H.V., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., Clark, J. and Marsden, CD. (1990) Anatomical and disease specifity of NADHCoQ reductase (complex I) deficiency in PD.J. Neurochem. 55, 2114–2149.

    Google Scholar 

  • Sharpe, M.K. and Cooper, C.E. (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase — catalytic production of nitric oxide and irreversible inhibition of enzyme activity.J. Biol. Chem. 273, 30961–30972.

    Article  PubMed  CAS  Google Scholar 

  • Shibuta, S., Mashimo, T., Zhang, P., Ohara, A. and Yoshiya, I. (1996) A new nitric oxide donor, NOC-18, exhibits a nociceptive effect in the rat formalin model.J. Neurol. Sci. 141, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Sies, H. (1993) Strategies of antioxidant defense.Eur. J. Biochem. 215, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Simic, M.G. (1988) Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis.Mutation Res. 202, 377–386.

    PubMed  CAS  Google Scholar 

  • Simonson, W. (1998) Promising agents for treating Alzheimer’s disease.Amer. J. Health 55 (Suppl. 2), S11-S16.

    CAS  Google Scholar 

  • Singh, A., Antonsen, S.A., Koroll, G.W., Kremers, W. and Singh, H. (1984) Radiolysis and photolysis of aqueous aerated tryptophan solutions. In Bors, W., Saran, M. and Tait, D. (Eds.)Oxygen Radicals in Chemistry and Biology (W. Gruyter and Co, Berlin-New York), pp. 491–494.

    Google Scholar 

  • Singh, R.J., Hogg, N., Josepj, J. and Kalyanaraman, B. (1996) Mechanism of nitric oxide release form S-nitrosothiols.J. Biol. Chem. 271, 18596–18603.

    Article  PubMed  CAS  Google Scholar 

  • Slivka, A., Spina, M.B. and Cohen, G. (1987) Reduced and oxidized glutathione in human and monkey brain.Neurosci Lett. 67, 269–274.

    Google Scholar 

  • Smith, M.A., Perry, G., Richey, PL., Sayre, L.M., Anderson, V.E., Beal, M.F. and Kowall, N. (1996) Oxidative damage in Alzheimer’s.Nature 382, 120–121.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.A., Vasak, M., Knipp, M., Castellani, R.J. and Perry, G. (1998) Dimethylargininase, a nitric oxide regulatory protein, in Alzheimer disease.Free Rad. Biol. Med. 25, 898–902.

    Article  PubMed  CAS  Google Scholar 

  • Smythies, J.R. (1996) On the function of neuromelanin.Proc. Roy. Soc. London B263, 491–496.

    Google Scholar 

  • Smythies, J.R. (1997) Oxidative reactions and schizophrenia: a review-discussion.Schizophrenia Res. 24, 357–364.

    Article  CAS  Google Scholar 

  • Smythies, J.R., Gottfries, C.-G. and Regland, R. (1997) Disturbances of one-carbon metabolism in neuropsychiatric disorders: a review.Biol. Psychiatry 41, 230–233.

    Article  PubMed  CAS  Google Scholar 

  • Sofic, E., Lange, K.W., Jellinger, K. and Reiderer, P. (1992) Reduced and oxidized glutathione in the substantia nigra of patients with PD.Neurosci. Lett. 142, 128–130.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, J.P.E., Jenner, P., Daniel, S.E., Less, S.E., Marsden, D.C. and Halliwell, B. (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species.J. Neurochem. 71, 2112–2122.

    Article  PubMed  CAS  Google Scholar 

  • Spina, M.B. and Cohen, G. (1988) Dopamine turnover and glutathione oxidation: implications for Parkinson’s disease.Proc. Natl. Acad. Sci. USA 80, 1398–1400.

    Google Scholar 

  • Squadrito, G.L., Jin, X. and Pryor, W.A. (1995) Stopped-flow kinetics study of the reaction of ascrobic acid with peroxynitrite.Arch. Biochem. Biophys. 322, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, E.R. (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences.Free Rad. Biol. Med. 9, 315–329.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, E.R. and Oliver, C.N. (1991) Metal-catalyzed oxidations of proteins. Physiological consequences.J. Biol. Chem. 266, 2005–2008.

    PubMed  CAS  Google Scholar 

  • Steenken, S. and Jovanovic, S.V. (1997) How easily oxidizable is DNA? One-reduction potential of adenosine and guano-sine radicals in aqueous solution.J. Amer. Chem. Soc. 119, 617–618.

    Article  CAS  Google Scholar 

  • Strijbos, P.J.L.M. (1998) Nitric oxide in cerebral ischemic neurodegeneration and excitoxicity.Critical Rev. Neurobiology 12, 223–243.

    CAS  Google Scholar 

  • Subramaniam, R., Koppal, T., Green, M., Yatin, S., Jordan, B., Drake, J. and Butterfield, D.A. (1998) The free radical antioxidant vitamin E protect cortical synaptosomal membranes from amyloid beta peptide (25–35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer’s disease.Neurochem. Res. 23, 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y. (1990) Free radicals, antioxidant enzymes and carcinogenesis.Free Rad. Biol. Med. 8, 583–599.

    Article  PubMed  CAS  Google Scholar 

  • Sutor, B. and Ten Bruggencate, G. (1990) Ascorbic acid: a useful reductant to avoid oxidation of catecholamines in electrophysiological experimentsin vitro. Nerosci. Lett.116, 287–292.

    Article  CAS  Google Scholar 

  • Suzuki, Y.J., Forman, H.J. and Sevanian, A. (1997) Oxidants as stimulator of signal transduction.Free Rad. Biol. Med. 22, 269–285.

    Article  PubMed  CAS  Google Scholar 

  • Sziraki, I., Mohanakumar, K.P., Rauchala, P., Kim, H.G., Yeh, K.J. and Chiueh, C.C. (1998) Manganese: a transition metal protects nigrostratial neurons from oxidative stress in the iron-induced animal model of Parkinsonism.Neuroscience 85, 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Tagami, M., Yamagata, K., Ikeda, K., Nara, Y, Fujino, H., Kubota, A., Numano, F. and Yamori, Y (1998) Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion.Lab. Invest. 78, 1415–1429.

    PubMed  CAS  Google Scholar 

  • Taglialatela, G., PerezPolo, J.R. and Rassin, D.K. (1998) Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis.Free Rad. Biol. Med. 25, 936–942.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, T, McLendon, C. and Thomas, G. (1998) L-deprenyl: nitric oxide production and dilation of cerebral blood vessels.Neuroreport 9, 2595–2600.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C.B. (1995) Apoptosis in the pathogenesis and treatment of disease.Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Toyokuni, S. (1996) Iron-induced carcinogenesis: the role of redox regulation.Free Rad. Biol. Med. 20, 553–566.

    Article  PubMed  CAS  Google Scholar 

  • Uppu, R.M., Lemercier, J.N., Squadrito, G.L., Zhang, H.W., Bolzan, R.M. and Pryor, W.A. (1998) Nitrosation by peroxynitrite: use of phenol as a probe.Arch. Biochem. Biophys. 358, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • van der Vliet, A., Hoen, P.A.C., Wong, P.S.Y., Bast, A. and Cross, C.E. (1998) Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide.J. Biol. Chem. 273, 30255–30262.

    Article  PubMed  Google Scholar 

  • Vanin, A.F. (1998) Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systems.Biochemistry (Moscow)63, 782–793.

    CAS  Google Scholar 

  • Volz, H.P. and Gleiter, C.H. (1998) Monoamine oxidase inhibitors: a perspective on their use in the elderly.Drugs and Aging 13, 341–355.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G.C., Jarvis, M.F. and Carelli, R.M. (1985) Ascorbic acid reduces the dopamine depletion induced by MPTPNeuropharmacology 24, 1261–1262.

    Article  PubMed  CAS  Google Scholar 

  • Wan Norby, S., Weyhenmeyer, J.A. and Clarkson, R.B. (1997) Simulation and inhibition of nitric oxide production in macrophages and neural cells as observed by spin trapping.Free Rad. Biol. Med. 22, 1–9.

    Article  Google Scholar 

  • Ward, J.F. (1994) The complexity of DNA damage: relevance to biological consequences.Int. J. Radiat. Biol. 66, 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Weindruch, R., Warner, H.R. and Starke-Reed, P.E. (1993) Future directions of free radical research in aging. In Yu, B.P. (Ed.),Free Radicals in Aging (CRC Press, Inc., Boca Raton), pp. 269–289.

    Google Scholar 

  • Wennmalm, A., Benthin, G., Jungersten, L., Edlung, A. and Petersson, A.S. (1994) Nitric oxide formation in man as reflected by plasma levels of nitrate, with special focus on kinetics, confounding factors and response to immunological challenge. In Moncada, S., Feelish, M., Busse, R. and Higgs, E.A. (Eds.)The Biology of Nitric Oxide (Portland Press) pp. 474–476.

  • Wickelgren, I. (1998) Neurobiology — a new route to treating schizophrenia.Science 281, 1264–1265.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R.J. (1986) Organic peroxy free radicals as ultimate agents in oxygen toxicity. In Sies, H. (Ed.),Oxidative stress (Academic Press, London), pp. 41–72.

    Google Scholar 

  • Wink, D.A. and Grisham, M.B. (1996) Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide.J. Biol. Chem. 271, 40–47.

    Article  PubMed  Google Scholar 

  • Wink, D.A., Hanbauer, J., Krishna, M.C., De Graff, W., Gamson, J. and Mitchell, J.B. (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species.Proc. Natl. Acad. Sci. USA 90, 9813–9817.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Nims, R.W., Saavedra, J.E., Utermahlen Jr., W.E. and Ford, PC. (1994) The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical.Proc. Natl. Acad. Sci. USA 91, 6604–6608.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C.C. (1993) Superoxide as an intracellular sink.Free Rad. Biol. Med. 14, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C.C. and Metodiewa, D. (1994) The reaction of superoxide with reduced glutathione.Arch. Biochem. Biophys. 314, 284–290.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C.C. and Metodiewa, D. (1995) The reaction of superoxide with thiols.Meth. Enzymol. 251 (Biothiols), 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C.C. and Metodiewa, D. (1998) Reactivity of biologically relevant thiol compounds with superoxide and hydrogen peroxide.Free Rad. Biol. Med. (in press).

  • Wood, J. and Garthwaite, J. (1994) Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signaling and its pharmacological properties.Neuropharmacology 33, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y, Dawson, V.L., Dawson, T.M., Snyder, S.H. and Zweier, J.L. (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine — depleted cells leading to peroxynitrite — mediated cellular injury.Proc. Natl. Acad. Sci. USA 93, 6770–6774.

    Article  PubMed  CAS  Google Scholar 

  • Yallampalli, S., Micci, M.A. and Taglialatela, G. (1998) Ascorbic acid prevents beta-amyloid-induced intracellular calcium increase and cell death in PC-12 cells.Neurosci. Lett. 251, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Yao, J.K., Reddy, R. and van Kammen, D.P. (1998a) Reduced level of plasma antioxidant uric acid in schizophrenia.Psychiatry Res. 80, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Yao, J.K., Reddy, R., McElhinny, L.G. and vanKammen, D.P. (1998b) Reduced status of plasma total antioxidant capacity in schizophrenia.Schizophrenia Res. 32, 1–8.

    Article  CAS  Google Scholar 

  • Ying, W. (1996) Deleterious network hypothesis of Alzheimer’s disease.Medical Hypotheses 46, 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Yu, B.P. (1994) Cellular defences against damage from reactive oxygen species.Physiol. Rev. 74, 139–155.

    PubMed  CAS  Google Scholar 

  • Yum, H.Y, Dawson, V.L. and Dawson, V.L. (1997) Nitric oxide in health and disease of the nervous system.Mol. Psychiatr. 2, 300–310.

    Article  Google Scholar 

  • Zang, L.Y and Shi, X.L. (1995) Evidence for superoxide production in peroxynitrite decomposition.Biochem. Mol. Biol. Int. 37, 355–360.

    PubMed  CAS  Google Scholar 

  • Zeller, E.A. (1938) Uber den enzymatischen abban von Histamine und Diamine.Helv. Chim. Acta 21, 880–890.

    Article  CAS  Google Scholar 

  • Zhang, F. and Dryhurst, G. (1994) Effect of L-cysteine on the oxidative chemistry of dopamine: new reaction pathways of potential relevance to ideopathic Parkinson’s disease.J. Med. Chem. 37, 1084–1098.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Naughton, D., Winyard, P.G., Benjamin, N., Blake, D.R. and Symons, M.C.R. (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity.Biochem. Biophys. Res. Comm. 249, 767–772.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, W., Ren, S. and Graziano, J.H. (1998) Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity.Brain Res. 799, 334–342.

    Article  PubMed  CAS  Google Scholar 

  • Zou, M.H. and Ulrich, V. (1996) Peroxynitrite inhibition of nitric oxide synthases.Biochemie 78, 785–791.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Metodiewa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metodiewa, D., Kośka, C. Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neurologic disorders. An overview. neurotox res 1, 197–233 (1999). https://doi.org/10.1007/BF03033290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033290

Keywords

Navigation