Skip to main content

Advertisement

Log in

Ganglioside Biosynthesis in Developing Brains and Apoptotic Cancer Cells: X. Regulation of Glyco-genes Involved in GD3 and Sialyl-Lex/a Syntheses

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gangliosides, the acidic glycosphingolipids (GSLs) containing N-acetylgalactosamine and sialic acid are ubiquitous in the central nervous system. At least six DSL-glycosyltransferase activities (GLTs Gangliosides, the acidic glycosphingolipids (GSLs) containing N-acetylgalactosamine and sialic acid (or NAc-Neuraminic acid) are ubiquitous in the central nervous system. At least six GSL-glycosyltransferase activities (GLTs) of Basu-Roseman pathway catalyzing the biosynthesis of these gangliosides have been characterized in developing chicken brains. Most of these glyco-genes are expressed in the early stages (7–17 days) of brain development and lowered in the adult stage, but the cause of reduction of enzymatic activities of these GLTs in the adult stages is not known. In order to study glyco-gene regulation we used four clonal metastatic cancer cells of colon and breast cancer tissue origin (Colo-205, SKBR-3, MDA-468, and MCF-3). The glyco-genes for synthesis of SA-LeX and SA-LeA (which contain N-acetylglucosamine, sialic acid and fucose) in these cells were modulated differently at different phases (between 2 and 48 h) of apoptotic inductions. L-PPMP, D-PDMP (inhibitor of glucosylceramide biosynthesis), Betulinic Acid (a triterpinoid isolated from bark of certain trees and used for cancer treatment in China), Tamoxifen a drug in use in the west for treatment of early stages of the disease in breast cancer patients), and cis-platin (an inhibitor of DNA biosynthesis used for testicular cancer patients) were used for induction of apoptosis in the above-mentioned cell lines. Within 2–6 h, transcriptional modulation of a number of glyco-genes was observed by DNA-micro-array (containing over 300 glyco genes attached to the glass cover slips) studies. Under long incubation time (24–48 h) almost all of the glyco-genes were downregulated. The cause of these glyco-gene regulations during apoptotic induction in metastatic carcinoma cells is unknown and needs future investigations for further explanations. These apoptotic agents could be employed as a new generation of anti-cancer drugs after properly delivered to the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Klenk K (1939) Beitrage zur chemie der lipidosen (3.mitteilung) Niemann-Pickschen krankheit und amourotische idiotie. Z Physiol Chem 263:128–143

    Article  Google Scholar 

  2. Svennerholm L (1962) The chemical structure of normal brain and Tay-Sachs gangliosides. Biochem Biophys Res Commun 9:436–441

    Article  PubMed  CAS  Google Scholar 

  3. Kuhn H, Wiegandt H (1963) Die konstitution der ganglio-N-tetraose und des ganglioside G1. Chem Ber 96:866–880

    Article  CAS  Google Scholar 

  4. Kuhn H, Wiegandt H (1963) Die constitution der ganglioside GII, GIII und GIV. Z. Naturforsch 18b:541–543

  5. Ledeen RW, Salsman K (1965) Structure of Tay-Sachs ganglioside 1. Biochemistry 4:2225–2233

    Article  CAS  Google Scholar 

  6. Keller M, Dennis RD, Leske B, Wiegandt H (1990) Immunochemical analysis of a monoclonal antibody recognizing a terminal glucuronic acid-containg epitope of insect acidic glycolipid. J Hybridoma 9:295–307

    Article  CAS  Google Scholar 

  7. Sugita M, Itori S, Inagaki F, Hori T (1989) Characterization of two glucuronic acid-containing glycosphingolipids in larvae of the green-bottle fly Lucilia caesar. J Biol Chem 264:15028–15033

    PubMed  CAS  Google Scholar 

  8. Chou DK, Jungalwala FB (1993) Characterization and developmental expression of a novel sulfotransferase for the biosynthesis of sulfoglucuronyl glycolipids in the nervous system. J Biol Chem 268:330–338

    PubMed  CAS  Google Scholar 

  9. Chou DK, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB (1986) Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J Biol Chem 261:11717–11725

    PubMed  CAS  Google Scholar 

  10. Chou DK, Tobet SA, Jungalwala FB (1998) Restoration of synthesis of sulfoglucuronyl glycolipids in cerebellar neurons promotes dedifferentiation and neurite outgrowth. J Biol Chem 273:8508–8515

    Article  PubMed  CAS  Google Scholar 

  11. Yamakawa T, Suzuki S (1952) The chemistry of lipids on post hemolytic residue of stroma of erythrocytes II. On the structure of hematinic acid. J Biochem 39:175–183

    CAS  Google Scholar 

  12. Yu RK, Tsai YT, Ariga T, Yanagisawa M (2011) Structures, biosynthesis, and functions of ganglioasides—an overview. J Oleo Sci 60:537–544

    Article  PubMed  CAS  Google Scholar 

  13. Hakomori SI (2001) Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 491:369–402

    Article  PubMed  CAS  Google Scholar 

  14. Hakomori S (1989) Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 52:257–331

    Article  PubMed  CAS  Google Scholar 

  15. Matsushita Y, Cleary KR, Ota PM, Hoff SD, Irimura I (1990) Sialyl-dimeric Lewis X antigen expressed on mucin-like glycoproteins in colorectal cancer metastasis. Lab Invest 63:780–791

    PubMed  CAS  Google Scholar 

  16. Saitoh O, Wang WC, Lota R, Fukuda M (1992) Differential glycosylation and cell surface expression of lysosome membrane glycoprotein in sublines of human colon carcinoma exhibiting distinct metastatic potential. J Biol Chem 267:5700–5711

    PubMed  CAS  Google Scholar 

  17. Hoffman LM, Brooks SE, Amsterdam D, Schneck L (1978) Fetal Tay-Sachs disease brain cells in culture: lack of turnover in [(14)C] glucosamine-labeled GM2 Trans. Am Soc Neurochem 9:206

    Google Scholar 

  18. Hoffman LM, Brooks SE, Stein MH, Adachi M, Schneck L (1989) Gangliosides in SV-40 transformed Tay-Sachs disease fetal brain. Metab Brain Dis 4:87–93

    Article  PubMed  CAS  Google Scholar 

  19. Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, van der Spoel AC, d’Azzo A, Perry VH, Butters TD, Dwek RA, Platt FM (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126:974–987

    Article  PubMed  CAS  Google Scholar 

  20. Fredman P, Dumaski J, Davidson P, Svennerholm L, Collins VP (1994) Expression of the ganglioside GD3 in human meningiomas is associated with monosomy of chromosome 22. J Neurochem 55:1838–1840

    Article  Google Scholar 

  21. Wikstrand CJ, Fredman P, McLendon RR, Svennerholm L, Bigner DD (1994) Altered expression of ganglioside phenotypes of human glioma in vivo and in vitro. Mol Chem Neuropathol 21:120–138

    Article  Google Scholar 

  22. Thomas CP, Buronfosse A, Fertil B (1995) Surface expression of GD3 disialogangliosides in human melanoma cells is correlated to both metastatic potential in vivo and radio sensitivity in vitro. C R Acad Sci III 318:1233–1238

    PubMed  CAS  Google Scholar 

  23. Hakomori SI (1996) Tumor malignancy defined aberrant glycosylation and sphingoglycolipid metabolism. Cancer Res 56:5309–5318

    PubMed  CAS  Google Scholar 

  24. Kannagi R (1997) Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj J 14:577–584

    Article  PubMed  CAS  Google Scholar 

  25. Takada A, Ohmori K, Yoneda K, Tsuyuoka K, Hasegawa A, Kiso M, Kannagi R (1993) Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res 53:354–361

    PubMed  CAS  Google Scholar 

  26. Basu S, Kaufman B, Roseman S (1965) Conversion of Tay-Sachs ganglioside to monosialoganglioside by uridine diphosphate D-galactose glycolipid: galactosyltransferase. J Biol Chem 240:4114–4117

    Google Scholar 

  27. Kaufman B, Basu S (1966) Embryonic chicken brain sialyltransferases. Methods Enzymol 8:365–368

    Google Scholar 

  28. Kaufman B, Basu S, Roseman S (1966) Studies on the biosynthesis of gangliosides. In: Aronson SM, Volk BW (eds) Inborn error of metabolism. Pergamon Press, Oxford

    Google Scholar 

  29. Basu S, Kaufman B, Roseman S (1968) Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brains. J Biol Chem 243:5802–5804

    PubMed  CAS  Google Scholar 

  30. Kaufman B, Basu S, Roseman S (1968) Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brains. J Biol Chem 243:5804–5806

    PubMed  CAS  Google Scholar 

  31. Basu S, Kaufman B, Roseman S (1973) Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem 248:1388–1394

    PubMed  CAS  Google Scholar 

  32. Steigerwald JC, Basu S, Roseman S (1975) Enzymatic synthesis of Tay-Sachs ganglioside. J Biol Chem 250:6727–6734

    PubMed  CAS  Google Scholar 

  33. Rui M, Decker M, Anilus V, Moskal JR, Bergdorf J, Johnson J, Basu M, Banerjee S, Basu S (2009) VII. Post-translational and post-transcriptional regulation of glycolipid glycosyltransferase genes in apoptotic breast carcinoma cells after treatment with L-PPMP. Glycoconj J 26:647–661

    Article  Google Scholar 

  34. Basu M, Presper KA, Basu S, Hoffman LM, Brooks SE (1979) Differential activities of glycolipid: glycosyltransferases in Tay-Sachs disease: studies in cultured cells from cerebrum. Proc Natl Acad Sci USA 76:4270–4274

    Article  PubMed  CAS  Google Scholar 

  35. Basu S, Basu M, Chien JL, Presper KA (1980) Biosynthesis of gangliosides in tissues. In: Svennerholm L, Dreyfus H, Urban P-F (eds) Structure and function of gangliosides. Plenum, New York

    Google Scholar 

  36. Basu S, Basu M (1982) Expression of glycolipid: glycosyltransferases in development and transformation. In: Horowitz M (ed) The glycoconjugates. Academic Press, New York

    Google Scholar 

  37. Basu S, Basu M, Kyle JW, Chon HC (1984) Biosynthesis in vitro of Gangliosides containing Gg- and Lc-core. In: Ledeen RL, Yu RK, Rapport MM, Suzuki K (eds) Ganglioside structure, function, and biomedical potential. Plenum Press, New York

    Google Scholar 

  38. Basu M, De T, Das KK, Kyle JW, Chon HC, Schaeper RJ, Basu S (1987) Glycosyltransferases involved in ganglioside biosynthesis. Methods Enzymol 138:575–607

    Article  PubMed  CAS  Google Scholar 

  39. Basu S, Das K, Schaeper RJ, Banerjee P, Daussin F, Basu M, Khan FA, Zhang BJ (1988) Biosynthesis in vitro of neuronal and non-neuronal gangliosides. In: Ledeen R (ed) New trends in ganglioside research: neurochemical and neurogenerative aspects. Fidia Research Series, Italy

    Google Scholar 

  40. Basu S, Ghosh S, Basu M, Hawes JW, Das KK, Zhang BJ, Li Z, Weng SA, Westervelt C (1990) Carbohydrate and hydrophobic-carbohydrate recognition sites (CARS and HY-CARS) in solubilized glycosyltransferases. Ind J Biochem Biophys 27:379–385

    Google Scholar 

  41. Basu S (1991) The serendipity of ganglioside biosynthesis: pathway to CARS and HY-CARS glycosyltransferases. Glycobiology 1:469–475

    Article  PubMed  CAS  Google Scholar 

  42. Schaeper RJ, Das KK, Li Z, Basu S (1992) Biosynthesis in vitro of GbOSe4Cer and GM2 glycosphingolipids by b1-3 and b1-4 N-acetylgalactosaminyltransferases from embryonic chicken brain. Carbohydr Res 236:227–244

    Article  PubMed  CAS  Google Scholar 

  43. Gornati R, Montorfano G, Basu S (1995) Test of glycolipid: glycosyltransferase and neuraminidase activities in human meningiomas. Cancer Biochem Biophys 13:135–146

    Google Scholar 

  44. Basu S, Basu M, Basu SS (1995) Biological specificities of sialyltransferases. In: Rosenberg A (ed) Biology of the sialic acid. Plenum Press, New York

    Google Scholar 

  45. Ghosh S, Kyle JW, Daussin F, Dastghieb S, Li Z, Basu S (1995) Purification, properties and characterization of GalT-3 (UDP-Gal:GM2 b1-3galactosyltransferse. Glycoconj J 12:838–847

    Article  PubMed  CAS  Google Scholar 

  46. Basu SS, Basu M, Li Z, Basu S (1996) Characterization of two glycolipid: alpha2-3 sialyltransferases (CMP-NeuAc:nLcOse4Cer alpha2-3SAT) and SAT-4 (CMP-NeuAc:GgOse4 -Cer alpha2-3 SAT), from human colon carcinoma (Colo-205 cells). Biochemistry 35:5166–5174

    Article  PubMed  CAS  Google Scholar 

  47. Basu SS, Dastghieb S, Basu M, Kelly P, Ghosh S, Basu S (1998) Purification and characterization of avian glycolipid:beta-galactosyltransferaes GalT-3 and GalT-4: cloning and expression. Acta Biochim Pol 45:451–467

    PubMed  CAS  Google Scholar 

  48. Basu S, Basu M, Dastghieb S, Hawes JW (1999) Biosynthesis and regulation of glycosphingolipids. In: Pinto BM (ed) Comprehensive natural products chemistry, vol 3. Pergamon Press, New York, pp 107–189

    Chapter  Google Scholar 

  49. Basu S, Das KK, Basu M (2000) Glycosyltransferases in glycosphingolipid biosynthesis. In: Ernest B, Sinay P, Hart G (eds) Chemistry and biology—a comprehensive handbook. Wiley-VCH, Germany

    Google Scholar 

  50. Basu M, Basu S (1972) Enzymatic synthesis of tetraglycosylceramide by galactosyltransferase from rabbit bone marrow. J Biol Chem 247:1489–1495

    PubMed  CAS  Google Scholar 

  51. Basu M, Basu S (1973) Biosynthesis of a blood group B-specific pentaglycosyl-ceramide by rabbit bone marrow galactosyltransferase. J Biol Chem 248:1388–1394

    PubMed  CAS  Google Scholar 

  52. Presper KA, Basu M, Basu S (1978) Biosynthesis in vitro of fucose-containing glycosphinglipids in human neuroblastoma IMR-32 cells. Proc Natl Acad Sci USA 75:1289–1293

    Article  Google Scholar 

  53. Basu M, Presper KA, Basu S, Hoffman LM, Brooks SE (1979) Differential activities of glycolipid glycosyltransferases in Tay-Sachs disease: studies in cultured cells. Proc Natl Acad Sci USA 76:4270–4274

    Article  PubMed  CAS  Google Scholar 

  54. Basu M, Weng SA, Tang H, Khan FA, Zhang BJ, Basu S (1996) Biosynthesis of nLcOse4Cer by GalT-4 in mouse T-lymphoma. Synthesis of neo- and polylactosamine core. Glycoconj J 13:423–432

    Article  PubMed  CAS  Google Scholar 

  55. Basu M, Basu S (1984) Biosynthesis of Ii-core glycolipid by N-acetylglucosaminyl- transferase from mouse lymphoma. J Biol Chem 259:12557–12562

    PubMed  CAS  Google Scholar 

  56. Basu M, Das K, Zhang B, Khan FA, Basu S (1988) Resolution of glycosyltransferases involved in the biosynthesis in vitro of cell surface glycosphingolipids. Ind J Biochem Biophys 25:112–118

    CAS  Google Scholar 

  57. Basu S, Basu M, Das KK, Daussin F, Schaeper RJ, Banerjee P, Khan FA, Suzuki I (1988) Solubilized glycosyltransferases and biosynthesis in vitro of glycolipids. Biochemie 70:1551–1562

    Article  CAS  Google Scholar 

  58. Higashi H, Basu M, Basu S (1985) Biosynthesis of disialosyl-neolactotetraosylcramide by sialyltransferase from embryonic chicken brain. J Biol Chem 260:824–828

    PubMed  CAS  Google Scholar 

  59. Basu M, Basu SS, Li T, Tang H, Basu S (1993) Regulation of expression of neolactoglycolipids and cloning of embryonic chicken brain GalT-4. Ind J Biochem Biophys 30:324–332

    CAS  Google Scholar 

  60. Basu M, Basu S, Stoffyn A, Stoffyn P (1982) Biosynthesis in vitro of sialyl-neolactotetraosylceramide by sialyltransferase from embryonic chicken brains. J Biol Chem 257:12765–12769

    PubMed  CAS  Google Scholar 

  61. Basu M, Hawes JW, Li Z, Ghosh S, Khan FA, Zhang BJ, Basu S (1991) Biosynthesis SA-Lex and diSA-Lex by Fucosyltransferses from colon carcinoma and embryonic brain tissues. Glycobiology 1:527–535

    Article  PubMed  CAS  Google Scholar 

  62. Basu M, Khan FA, Das KK, Zhang BJ (1991) Biosynthesis in vitro of core lacto-series glycosphingolipids by N-acetylglucosaminyltransferase from human colon carcinoma cells, Colo 205. Carbohydr Res 209:261–277

    Article  PubMed  CAS  Google Scholar 

  63. Basu M, Das KK, Zhang BJ, Khan FA, Basu S (1988) Biosynthesis of tumor related glycosphingolipids. Ind J Biochem Biophys 35:112–118

    Google Scholar 

  64. Keenan TW, Morre JD, Basu S (1974) Ganglioside biosynthesis: concentration of glycosphingolipid glycosyltransferase in Golgi apparatus from rat liver. J Biol Chem 249:310–315

    PubMed  CAS  Google Scholar 

  65. Basu S, Schultz A, Basu M, Roseman S (1971) Enzymatic synthesis of a galactocerebroside by a galactosyltransferase from embryonic chicken brain. J Biol Chem 243:4272–4279

    Google Scholar 

  66. Yu RK, Lee SH (1976) In vitro biosynthesis sialogalactosylceramide (G7) by mouse brain microsomes. J Biol Chem 251(1):198–203

    PubMed  CAS  Google Scholar 

  67. Van Echter-Deekert G, Sandhoff K (1999) Organization and topology of sphingolipid metabolism. In: Pinto BM (ed) Comprehensive natural products chemistry. Pergamon Press, New York

    Google Scholar 

  68. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50:5440–5445

    Google Scholar 

  69. Suzuki Y, Yanagisawa M, Ariga T, Yu RK (2011) Histone acetylation-mediated glycosyltransderase gene in mouse brain during development. J Neurochem 116:874–880

    Article  PubMed  CAS  Google Scholar 

  70. Moskal JR, Gardner DA, Basu S (1974) Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells. Biochem Biophys Res Commun 61:751–758

    Article  PubMed  CAS  Google Scholar 

  71. Weedon D, Searle J, Kerr JF (1979) Its nature and implication for dermatopathology. Am J Dermatopathol 1:133–144

    Article  PubMed  CAS  Google Scholar 

  72. Kostrzewa RM (2000) Review of apoptosis vs necrosis of substantia nigra pars compacta in Perkinson’s disease. Neurotox Res 2:239–250

    Article  PubMed  CAS  Google Scholar 

  73. Blugosklonny MV (2000) Cell death beyond apoptosis. Leukemia 14:1502–1508

    Article  Google Scholar 

  74. Patel VA, Lee DJ, Longacre-Antoni A, Feng L, Lieberthal W, Rauch J, Ucker DS, Levine JS (2009) Apoptotic and necrotic cells as sentinels of local stress and inflammation response pathways initiated in nearby viable cells. Autoimmunity 42:317–321

    Article  PubMed  CAS  Google Scholar 

  75. Basu S, Rui M, Mikulla B, Bradley M, Moulton C, Basu M, Banerjee S, Inokuchi JI (2004) Apoptosis of human carcinoma cells in the presence of inhibitors of glycosphingolipid biosynthesis. I. Treatment of Colo-205 and SKBR3 cells with isomers of PDMP and PPMP. Glycoconj J 20:157–168

    Article  PubMed  CAS  Google Scholar 

  76. Rui M, Koulov A, Moulton C, Basu M, Banerjee S, Goodson H, Basu S (2004) Apoptosis of carcinoma cells in the presence of disialosylganglioside. II. Treatment of SKBR3 cells with GD3 and GD1b ganglioside. Glycoconj J 20:319–330

    Google Scholar 

  77. Basu S, Rui M, Boyle PJ, Mikulla B, Bradley M, Smith B, Basu M, Banerjee S (2004) Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs. III. Treatment of Colo-205 and SKBR3 cells with cis-platin, tamoxifen, betulinic acid, L-PDMP, L-PPMP and ganglioside. Glycoconj J 20:563–577

    Article  PubMed  CAS  Google Scholar 

  78. Boyle PJ, Rui M, Tuteja N, Banerjee S, Basu S (2006) Apoptosis of human breast carcinoma cells in the presence of cis-platin and L-/D-PPMP. IV. Modulation of replication complexes and glycolid: glycosyltransferases. Glycoconj J 23:175–187

    Article  PubMed  CAS  Google Scholar 

  79. Rui M, Hopp EA, Decker M, Loucks A, Johnson JP, Moskal JR, Basu M, Banerjee S, Basu S (2011) VIII Regulation of glycosyltranferase genes in apoptotic breast cancer cells by L-PPMP and cis-platin. In: Wu AM (ed) The molecular immunology of complex carbohydrates-3, Advances in experimental biology, pp 621–642

  80. Basu S, Rui M, Moskal JR, Basu M, Banerjee S (2011) Apoptosis of breast cancer cells: IX. Modulation of genes for glycoconjugate biosynthesis and targeted drug delivery. In: Sudhakaran PR (ed) Advances of experimental biology (in press)

  81. Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, Lin JP, Tang NNY, Chug JG, Chou MJ, Teng YH, Chen DR (2010) Quercetin-mediated cells cycle arrest and apoptosis involving activation of a Caspase cascade through mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33:1181–1191

    Article  PubMed  CAS  Google Scholar 

  82. Nohara K, Wang F, Spiegel S (1998) Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cell lines. Breast Cancer Res Treat 48:149–157

    Article  PubMed  CAS  Google Scholar 

  83. Gillespie W, Kelm S, Paulson JC (1992) Cloning and expression of the Gal-beta1,3GalNAcalpha-2,3-sialyltransferase. J Biol Chem 267:21004–21010

    PubMed  CAS  Google Scholar 

  84. Wen DX, Livingstone BD, Medzihradszky KF, Kelm S (1992) Primary structure of Gal-beta-1,3(4) GlcNAc-alpha-2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family. J Biol Chem 267:21011–21019

    PubMed  CAS  Google Scholar 

  85. Holmes EH, Xu Z, Sherwood AL, Maacher BA (1995) Structure-function analysis of human alfa1-3fucosyltransferase. A GDP-protected, N-ethylmaleimide-sensitive site in FucTIII and FucT-V corresponds to Ser178 in FucT-IV. J Biol Chem 270:8145–8151

    Article  PubMed  CAS  Google Scholar 

  86. Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB (1994) Molecular cloning of a cDNA encoding a novel human leukocytes alfa-1,3-fucosyltransferase capable of synthesizing the sialyl LewisX determinant. J Biol Chem 269:16789–16794

    PubMed  CAS  Google Scholar 

  87. Kannagi R (2002) Regulatory roles of carbohydrate ligands for selectins in homing of lymphocytes. Curr Opin Struct Biol 12:599–608

    Article  PubMed  CAS  Google Scholar 

  88. Kannagi R (2004) Molecular mechanism for cancer-associated induction of sialyl LewisX and sialyl Lewis A expression—the Warburg effect revisited. Glycoconj J 20:353–364

    Article  PubMed  CAS  Google Scholar 

  89. Kroes RA, He H, Emmett MR, Nilsson CL, LeachIII FE, Amster IJ, Marshall AG, Moskal JR (2011) Overexpression of ST6GalNAcV, a gangliposide-specific alpha-2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Natl Acad Sci USA Early electronic Edition:1–6

Download references

Acknowledgments

The authors greatly acknowledge the help of Mrs. Dorisanne Nielsen and Mr. Eric Kuehner during preparation of this manuscript. Our work on Regulation of glycosphingolipid in apoptotic carcinoma cells was supported by grants from NIH: NS-18005 (Jacob Javits Award) and from NCI: CA-14764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Basu.

Additional information

Special Issue: In Honor of Bob Leeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Ma, R., Moskal, J.R. et al. Ganglioside Biosynthesis in Developing Brains and Apoptotic Cancer Cells: X. Regulation of Glyco-genes Involved in GD3 and Sialyl-Lex/a Syntheses. Neurochem Res 37, 1245–1255 (2012). https://doi.org/10.1007/s11064-012-0762-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0762-9

Keywords

Navigation