Skip to main content

Advertisement

Log in

Effects of Cu,Zn-Superoxide Dismutase on Cell Proliferation and Neuroblast Differentiation in the Mouse Dentate Gyrus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress is one of the most important factors in reducing adult hippocampal neurogenesis in the adult brain. In this study, we observed the effects of Cu,Zn-superoxide dismutase (SOD1) on lipid peroxidation, cell proliferation, and neuroblast differentiation in the mouse dentate gyrus using malondialdehyde (MDA), Ki67, and doublecortin (DCX), respectively. We constructed an expression vector, PEP-1, fused PEP-1 with SOD1, and generated PEP-1-SOD1 fusion protein. We administered PEP-1 and 100 or 500 μg PEP-1-SOD1 intraperitoneally once a day for 3 weeks and sacrificed at 30 min after the last administrations. PEP-1 administration did not change the MDA levels compared to those in the vehicle-treated group, while PEP-1-SOD1 treatment significantly reduced MDA levels compared to the vehicle-treated group. In the PEP-1-treated group, the number of Ki67-positive nuclei was similar to that in the vehicle-treated group. In the 100 μg PEP-1-SOD1-treated group, the number of Ki67-positive nuclei was slightly decreased; however, in the 500 μg PEP-1-SOD1-treated group, Ki67-positive nuclei were decreased to 78.5% of the vehicle-treated group. The number of DCX-positive neuroblasts in the PEP-1-treated group was similar to that in the vehicle-treated group. However, the arborization of DCX-positive neuroblasts was significantly decreased in both the 100 and 500 μg PEP-1-SOD1-treated groups compared to that in the vehicle-treated group. The number of DCX-positive neuroblasts with tertiary dendrites was markedly decreased in the 500 μg PEP-1-SOD1-treated group. These results suggest that a SOD1 supplement to healthy mice may not be necessary to modulate cell proliferation and neuroblast differentiation in the dentate gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amrein I, Lipp HP (2009) Adult hippocampal neurogenesis of mammals: evolution and life history. Biol Lett 5:141–144

    Article  PubMed  Google Scholar 

  2. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    Article  PubMed  CAS  Google Scholar 

  3. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  4. Lee S, Kim DH, Lee DH et al (2010) Oroxylin A, a flavonoid, stimulates adult neurogenesis in the hippocampal dentate gyrus region of mice. Neurochem Res 35:1725–1732

    Article  PubMed  CAS  Google Scholar 

  5. Ramirez-Amaya V, Marrone DF, Gage FH, Worley PF, Barnes CA (2006) Integration of new neurons into functional neural networks. J Neurosci 26:12237–12241

    Article  PubMed  CAS  Google Scholar 

  6. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  Google Scholar 

  7. Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11

    Article  PubMed  CAS  Google Scholar 

  8. Ara J, Fekete S, Zhu A, Frank M (2010) Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain. Neurochem Res 35:1455–1470

    Article  PubMed  CAS  Google Scholar 

  9. Brummelte S, Galea LA (2010) Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 168:680–690

    Article  PubMed  CAS  Google Scholar 

  10. Fujioka A, Fujioka T, Tsuruta R, Izumi T, Kasaoka S, Maekawa T (2011) Effects of a constant light environment on hippocampal neurogenesis and memory in mice. Neurosci Lett 488:41–44

    Article  PubMed  CAS  Google Scholar 

  11. Hwang IK, Yi SS, Kim YN et al (2008) Reduced hippocampal cell differentiation in the subgranular zone of the dentate gyrus in a rat model of type II diabetes. Neurochem Res 33:394–400

    Article  PubMed  CAS  Google Scholar 

  12. Paizanis E, Kelaï S, Renoir T, Hamon M, Lanfumey L (2007) Life-long hippocampal neurogenesis: environmental, pharmacological and neurochemical modulations. Neurochem Res 32:1762–1771

    Article  PubMed  CAS  Google Scholar 

  13. Wines-Samuelson M, Schulte EC, Smith MJ et al (2010) Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice. PLoS One 5:e10195

    Article  PubMed  Google Scholar 

  14. Yan YP, Lang BT, Vemuganti R, Dempsey RJ (2009) Osteopontin is a mediator of the lateral migration of neuroblasts from the subventricular zone after focal cerebral ischemia. Neurochem Int 55:826–832

    Article  PubMed  CAS  Google Scholar 

  15. Smith J, Ladi E, Mayer-Proschel M, Noble M (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 97:10032–10037

    Article  PubMed  CAS  Google Scholar 

  16. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  17. Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3:431–443

    Article  PubMed  CAS  Google Scholar 

  18. Manda K, Ueno M, Anzai K (2009) Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J Pineal Res 46:71–78

    Article  PubMed  CAS  Google Scholar 

  19. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  20. Jolitha AB, Subramanyam MV, Asha Devi S (2006) Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: studies on superoxide dismutase isoenzymes and protein oxidation status. Exp Gerontol 41:753–763

    Article  PubMed  CAS  Google Scholar 

  21. Bechmann I, Galea I, Perry VH (2007) What is the blood-brain barrier (not)? Trends Immunol 28:5–11

    Article  PubMed  CAS  Google Scholar 

  22. Eum WS, Kim DW, Hwang IK et al (2004) In vivo protein transduction: biologically active intact pep-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic Biol Med 37:1656–1669

    Article  PubMed  CAS  Google Scholar 

  23. Hwang IK, Eum WS, Yoo KY et al (2005) Copper chaperone for Cu, Zn-SOD supplement potentiates the Cu, Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus. Free Radic Biol Med 39:392–402

    Article  PubMed  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Couillard-Despres S, Winner B, Schaubeck S et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  26. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  27. Yoo DY, Kim W, Kim DW et al (2011) Pyridoxine enhances cell proliferation and neuroblast differentiation by upregulating the GABAergic system in the mouse dentate gyrus. Neurochem Res 36:713–721

    Article  PubMed  CAS  Google Scholar 

  28. Herrera D, Yague A, Johnsen-Soriano S et al (2003) Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc Natl Acad Sci USA 100:7919–7924

    Article  PubMed  CAS  Google Scholar 

  29. Jin K, Minami M, Xie L et al (2004) Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain. Aging Cell 3:373–377

    Article  PubMed  CAS  Google Scholar 

  30. Limoli C, Giedzinski E, Rola R, Otsuka S, Palmer T, Fike J (2004) Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat Res 161:17–27

    Article  PubMed  CAS  Google Scholar 

  31. Shors T, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  32. Choi HS, An JJ, Kim SY et al (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic Biol Med 41:1058–1068

    Article  PubMed  CAS  Google Scholar 

  33. Fishman K, Baure J, Zou Y et al (2009) Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radic Biol Med 47:1459–1467

    Article  PubMed  CAS  Google Scholar 

  34. Rola R, Zou Y, Huang TT et al (2007) Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med 42:1133–1145

    Article  PubMed  CAS  Google Scholar 

  35. Limoli CL, Giedzinski E, Baure J, Doctrow SR, Rola R, Fike JR (2006) Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells. Radiat Prot Dosimetry 122:228–236

    Article  PubMed  CAS  Google Scholar 

  36. Kamsler A, Avital A, Greenberger V, Segal M (2007) Aged SOD overexpressing mice exhibit enhanced spatial memory while lacking hippocampal neurogenesis. Antioxid Redox Signal 9:181–189

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help in this study. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010580), and by a grant (2010K000823) from Brain Research Center of the twenty-first Century Frontier Research Program funded by the Ministry of Education, Science and Technology, the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moo-Ho Won or In Koo Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, D.Y., Shin, B.N., Kim, I.H. et al. Effects of Cu,Zn-Superoxide Dismutase on Cell Proliferation and Neuroblast Differentiation in the Mouse Dentate Gyrus. Neurochem Res 37, 261–267 (2012). https://doi.org/10.1007/s11064-011-0605-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0605-0

Keywords

Navigation