Skip to main content

Advertisement

Log in

Differential Effect of Nimodipine in Attenuating Iron-Induced Toxicity in Brain- and Blood–Brain Barrier-Associated Cell Types

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metal homeostasis is increasingly being evaluated as a therapeutic target in stroke and neurodegenerative diseases. Metal dysregulation has been shown to lead to protein aggregation, plaque formation and neuronal death. In 2007, we first reported that voltage-gated calcium channels act as a facile conduit for the entry of free ferrous (Fe2+) ions into neurons. Herein, we evaluate differential iron toxicity to central nervous system cells and assess the ability of the typical L-type voltage-gated calcium channel blocker nimodipine to attenuate iron-induced toxicity. The data demonstrate that iron sulfate induces a dose-dependent decrease in cell viability in rat brain endothelial cells (RBE4; LC50 = 150 μM), neuronal cells (Neuro-2α neuroblastoma; LC50 = 400 μM), and in astrocytes (DI TNC1; LC50 = 1.1 mM). Pre-treatment with nimodipine prior to iron sulfate exposure provided a significant (P < 0.05) increase in viable cell numbers for RBE4 (2.5-fold), Neuro2-α (~2-fold), and nearly abolished toxicity in primary neurons. Astrocytes were highly resistant to iron toxicity compared to the other cell types tested and nimodipine had no (P > 0.05) protective effect in these cells. The data demonstrate variable susceptibility to iron overload conditions in different cell types of the brain and suggest that typical L-type voltage-gated calcium channel blockers (here represented by nimodipine), may serve as protective agents in conditions involving iron overload, particularly in cell types highly susceptible to iron toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hulet SW, Hess EJ, Debinski W, Arosio P, Bruce K, Powers S, Connor JR (1999) Characterization and distribution of ferritin binding sites in the adult mouse brain. J Neurochem 72:868–874

    Article  PubMed  CAS  Google Scholar 

  2. Youdim MB, Ben-Shachar D, Yehuda S, Riederer P (1990) The role of iron in the basal ganglion. Adv Neurol 53:155–162

    PubMed  CAS  Google Scholar 

  3. Kissel K, Hamm S, Schulz M, Vecchi A, Garlanda C, Engelhardt B (1998) Immunohistochemical localization of the murine transferrin receptor (TfR) on blood-tissue barriers using a novel anti-TfR monoclonal antibody. Histochem Cell Biol 110:63–72

    Article  PubMed  CAS  Google Scholar 

  4. Crichton RR, Ward RJ (2006) Metal-based neurodegeneration: from molecular mechanisms to therapeutic strategies. Wiley, Chichester

    Google Scholar 

  5. Connor JR, Menzies SL, Burdo JR, Boyer PJ (2001) Iron and iron management proteins in neurobiology. Pediatr Neurol 25:118–129

    Article  PubMed  CAS  Google Scholar 

  6. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  7. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629–652. doi:10.1097/01.WCB.0000073905.87928.6D

    Article  PubMed  CAS  Google Scholar 

  8. Finch CA, Hegsted M, Kinney TD, Thomas ED, Rath CE, Haskins D, Finch S, Fluharty RG (1950) Iron metabolism: the pathophysiology of iron storage. Blood 5:983–1008

    PubMed  CAS  Google Scholar 

  9. Connor J, Menzies S, St Martin S, Mufson E (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611

    Article  PubMed  CAS  Google Scholar 

  10. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    Article  PubMed  CAS  Google Scholar 

  11. Dickinson TK, Connor JR (1998) Immunohistochemical analysis of transferrin receptor: regional and cellular distribution in the hypotransferrinemic (hpx) mouse brain. Brain Res 801:171–181

    Article  PubMed  CAS  Google Scholar 

  12. Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3:200–206

    Article  PubMed  CAS  Google Scholar 

  13. Moos T, Morgan EH (2004) The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann N Y Acad Sci 1012:14–26

    Article  PubMed  CAS  Google Scholar 

  14. Ke Y, Qian ZM (2007) Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 83:149–173

    Article  PubMed  CAS  Google Scholar 

  15. Moos T, Morgan EH (1998) Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res 54:486–494. doi:10.1002/(SICI)1097-4547(19981115)54:4<486:AID-JNR6>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  16. Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7:103–108

    Article  PubMed  CAS  Google Scholar 

  17. Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740. doi:JNC497610.1111/j.1471-4159.2007.04976.x

    Article  PubMed  CAS  Google Scholar 

  18. Bradbury MW (1997) Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem 69:443–454

    Article  PubMed  CAS  Google Scholar 

  19. Lane DJ, Robinson SR, Czerwinska H, Bishop GM, Lawen A (2010) Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem J 432:123–132. doi:BJ2010131710.1042/BJ20101317

    Article  PubMed  CAS  Google Scholar 

  20. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91:9–18

    Article  PubMed  CAS  Google Scholar 

  21. Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164

    Article  PubMed  CAS  Google Scholar 

  22. Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    Article  PubMed  CAS  Google Scholar 

  23. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  24. Salvador GA, Oteiza PI (2011) Iron overload triggers redox-sensitive signals in human IMR-32 neuroblastoma cells. Neurotoxicology 32:75–82. doi:10.1016/j.neuro.2010.11.006

    Article  PubMed  CAS  Google Scholar 

  25. Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD, Van der Schyf CJ (2007) Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res 32:1686–1693. doi:10.1007/s11064-007-9313-1

    Article  PubMed  CAS  Google Scholar 

  26. Pelizzoni I, Macco R, Morini MF, Zacchetti D, Grohovaz F, Codazzi F (2011) Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell 10:172–183. doi:10.1111/j.1474-9726.2010.00652.x

    Article  PubMed  CAS  Google Scholar 

  27. Nunez-Millacura C, Tapia V, Munoz P, Maccioni RB, Nunez MT (2002) An oxidative stress-mediated positive-feedback iron uptake loop in neuronal cells. J Neurochem 82:240–248

    Article  PubMed  CAS  Google Scholar 

  28. Link G, Saada A, Pinson A, Konijn AM, Hershko C (1998) Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J Lab Clin Med 131:466–474

    Article  PubMed  CAS  Google Scholar 

  29. Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield DA (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233:145–162. doi:10.1016/j.jns.2005.03.012

    Article  PubMed  CAS  Google Scholar 

  30. Deng X, Vidal R, Englander EW (2010) Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy. Neurosci Lett 479:44–48. doi:10.1016/j.neulet.2010.05.025

    Article  PubMed  CAS  Google Scholar 

  31. Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M (2006) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644. doi:10.1007/s00702-005-0410-5

    Article  PubMed  CAS  Google Scholar 

  32. Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ (2007) Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 32:1196–1208. doi:10.1007/s11064-007-9290-4

    Article  PubMed  CAS  Google Scholar 

  33. Kress GJ, Dineley KE, Reynolds IJ (2002) The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 22:5848–5855

    PubMed  CAS  Google Scholar 

  34. Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N (1999) Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia 28:85–96. doi:10.1002/(SICI)1098-1136(199911)28:2<85:AID-GLIA1>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  35. Nunez MT, Gallardo V, Munoz P, Tapia V, Esparza A, Salazar J, Speisky H (2004) Progressive iron accumulation induces a biphasic change in the glutathione content of neuroblastoma cells. Free Radic Biol Med 37:953–960. doi:10.1016/j.freeradbiomed.2004.06.005S0891584904004587

    Article  PubMed  CAS  Google Scholar 

  36. Raps SP, Lai JC, Hertz L, Cooper AJ (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 493:398–401. doi:0006-8993(89)91178-5

    Article  PubMed  CAS  Google Scholar 

  37. Schroeter ML, Mertsch K, Giese H, Muller S, Sporbert A, Hickel B, Blasig IE (1999) Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier. FEBS Lett 449:241–244

    Article  PubMed  CAS  Google Scholar 

  38. Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20:173–180

    PubMed  CAS  Google Scholar 

  39. Bishop GM, Scheiber IF, Dringen R, Robinson SR (2010) Synergistic accumulation of iron and zinc by cultured astrocytes. J Neural Transm 117:809–817. doi:10.1007/s00702-010-0420-9

    Article  PubMed  CAS  Google Scholar 

  40. Tulpule K, Robinson SR, Bishop GM, Dringen R (2010) Uptake of ferrous iron by cultured rat astrocytes. J Neurosci Res 88:563–571. doi:10.1002/jnr.22217

    PubMed  CAS  Google Scholar 

  41. Hoepken HH, Korten T, Robinson SR, Dringen R (2004) Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem 88:1194–1202

    Article  PubMed  CAS  Google Scholar 

  42. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148. doi:10.1074/jbc.M301988200M301988200

    Article  PubMed  CAS  Google Scholar 

  43. Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9:1187–1194. doi:10.1038/nm920nm920

    Article  PubMed  CAS  Google Scholar 

  44. Zapater P, Moreno J, Horga JF (1997) Neuroprotection by the novel calcium antagonist PCA50938, nimodipine and flunarizine, in gerbil global brain ischemia. Brain Res 772:57–62

    Article  PubMed  CAS  Google Scholar 

  45. Kajikawa H, Ohta T, Yoshikawa Y, Funatsu N, Yamamoto M, Someda K (1979) Cerebral vasospasm and hemoglobins–clinical and experimental studies. Neurol Med Chir 19:61–71

    Article  CAS  Google Scholar 

  46. Wan S, Hua Y, Keep RF, Hoff JT, Xi G (2006) Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl 96:199–202

    Article  PubMed  CAS  Google Scholar 

  47. Hua Y, Nakamura T, Keep RF, Wu J, Schallert T, Hoff JT, Xi G (2006) Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg 104:305–312. doi:10.3171/jns.2006.104.2.305

    Article  PubMed  CAS  Google Scholar 

  48. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    PubMed  CAS  Google Scholar 

  49. Berg D, Hochstrasser H, Schweitzer KJ, Riess O (2006) Disturbance of iron metabolism in Parkinson’s disease–ultrasonography as a biomarker. Neurotox Res 9:1–13

    Article  PubMed  CAS  Google Scholar 

  50. Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86:1142–1148

    Article  PubMed  CAS  Google Scholar 

  51. Jurma OP, Hom DG, Andersen JK (1997) Decreased glutathione results in calcium-mediated cell death in PC12. Free Radic Biol Med 23:1055–1066

    Article  PubMed  CAS  Google Scholar 

  52. Schenck JF, Zimmerman EA (2004) High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 17:433–445. doi:10.1002/nbm.922

    Article  PubMed  CAS  Google Scholar 

  53. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56:978–982

    Article  PubMed  CAS  Google Scholar 

  54. Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA (2002) Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24:184–187

    Article  PubMed  CAS  Google Scholar 

  55. Castellani RJ, Smith MA, Nunomura A, Harris PL, Perry G (1999) Is increased redox-active iron in Alzheimer disease a failure of the copper-binding protein ceruloplasmin? Free Radic Biol Med 26:1508–1512

    Article  PubMed  CAS  Google Scholar 

  56. Bishop GM, Robinson SR (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke. Brain Res 907:175–187

    Article  PubMed  CAS  Google Scholar 

  57. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82:1137–1147

    Article  PubMed  CAS  Google Scholar 

  58. Levenson CW (2005) Trace metal regulation of neuronal apoptosis: from genes to behavior. Physiol Behav 86:399–406. doi:10.1016/j.physbeh.2005.08.010

    Article  PubMed  CAS  Google Scholar 

  59. Yagami T, Ueda K, Sakaeda T, Itoh N, Sakaguchi G, Okamura N, Hori Y, Fujimoto M (2004) Protective effects of a selective L-type voltage-sensitive calcium channel blocker, S-312-d, on neuronal cell death. Biochem Pharmacol 67:1153–1165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. A. Lockman or C. J. Van der Schyf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockman, J.A., Geldenhuys, W.J., Bohn, K.A. et al. Differential Effect of Nimodipine in Attenuating Iron-Induced Toxicity in Brain- and Blood–Brain Barrier-Associated Cell Types. Neurochem Res 37, 134–142 (2012). https://doi.org/10.1007/s11064-011-0591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0591-2

Keywords

Navigation