Skip to main content

Advertisement

Log in

Synergistic accumulation of iron and zinc by cultured astrocytes

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Iron and zinc are essential for normal brain function, yet the mechanisms used by astrocytes to scavenge non-transferrin-bound iron (NTBI) and zinc are not well understood. Ischaemic stroke, traumatic brain injury and Alzheimer’s disease are associated with perturbations in the metabolism of NTBI and zinc, suggesting that these two metals may collectively contribute to pathology. The present study has investigated the accumulation of NTBI and zinc by rat primary astrocyte cultures. It was found that astrocytes express mRNA for both divalent metal transporter 1 (DMT1) and Zip14, indicating the potential for these transporters to contribute to the accumulation of NTBI and zinc by these cells. Astrocytes were found to accumulate iron from ferric chloride in a time- and dose-dependent manner, and the rate of accumulation was strongly stimulated by co-incubation with zinc acetate. In addition, cultured astrocytes rapidly accumulated zinc from zinc acetate, and this accumulation was stimulated by co-incubation with ferric chloride. Because a synergistic stimulation of iron and zinc accumulation is inconsistent with the known properties of DMT1 and Zip14, the present results suggest that additional mechanisms assist astrocytes to scavenge iron and zinc when they are present together in the extracellular compartment. These mechanisms may be involved in disorders that involve elevations in the extracellular concentrations of these metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  CAS  PubMed  Google Scholar 

  • Attieh ZK, Mukhopadhyay CK, Seshadri V, Tripoulas NA, Fox PL (1999) Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J Biol Chem 274:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Belloni-Olivi L, Marshall C, Laal B, Andrews GK, Bressler J (2009) Localization of zip1 and zip4 mRNA in the adult rat brain. J Neurosci Res 87:3221–3230

    Article  CAS  PubMed  Google Scholar 

  • Bishop GM, Robinson SR (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke. Brain Res 907:175–187

    Article  CAS  PubMed  Google Scholar 

  • Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA (2002) Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24:184–187

    Article  CAS  PubMed  Google Scholar 

  • Bishop GM, Dringen R, Robinson SR (2007) Zinc stimulates the production or toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic Biol Med 42:1222–1230

    Article  CAS  PubMed  Google Scholar 

  • Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanisms: an overview. Biometals 16:63–75

    Article  CAS  PubMed  Google Scholar 

  • Chowanadisai W, Kelleher SL, Lonnerdal B (2005) Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. J Nutr 135:1002–1007

    CAS  PubMed  Google Scholar 

  • Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93

    Article  CAS  PubMed  Google Scholar 

  • Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91:9–18

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Dailey LA, Soukup J, Stonehuerner J, Richards JD, Callaghan KD, Yang F, Ghio AJ (2009) Zinc transport by respiratory epithelial cells and interaction with iron homeostasis. Biometals 22:803–815

    Article  CAS  PubMed  Google Scholar 

  • Dineley KE, Scanlon JM, Kress GJ, Stout AK, Reynolds IJ (2000) Astrocytes are more resistant than neurons to the cytotoxic effects of increased [Zn2+]i. Neurobiol Dis 7:310–320

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2:223–228

    Article  CAS  Google Scholar 

  • Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32:1884–1890

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Aschner M (2006) Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicology 27:125–130

    Article  CAS  PubMed  Google Scholar 

  • Frederickson CJ, Hernandez MD, Goik SA, Morton JD, McGinty JF (1988) Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study. Brain Res 446:383–386

    Article  CAS  PubMed  Google Scholar 

  • Frederickson CJ, Hernandez MD, McGinty JF (1989) Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res 480:317–321

    Article  CAS  PubMed  Google Scholar 

  • Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD, Van der Schyf CJ (2007a) Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res 32:1686–1693

    Article  CAS  PubMed  Google Scholar 

  • Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ (2007b) Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 32:1196–1208

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Zhao N, Knutson MD, Enns CA (2008) The hereditary hemochromatosis protein, HFE, inhibits iron uptake via down-regulation of Zip14 in HepG2 cells. J Biol Chem 283:21462–21468

    Article  CAS  PubMed  Google Scholar 

  • Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  • Hamprecht B, Löffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345

    Article  CAS  PubMed  Google Scholar 

  • Hoepken HH, Korten T, Robinson SR, Dringen R (2004) Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem 88:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736–738

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    Article  CAS  PubMed  Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Kramer KK, Liu J, Choudhuri S, Klaassen CD (1996) Induction of metallothionein mRNA and protein in murine astrocyte cultures. Toxicol Appl Pharmacol 136:94–100

    Article  CAS  PubMed  Google Scholar 

  • Kress GJ, Dineley KE, Reynolds IJ (2002) The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 22:5848–5855

    CAS  PubMed  Google Scholar 

  • Lin AM (2001) Coexistence of zinc and iron augmented oxidative injuries in the nigrostriatal dopaminergic system of SD rats. Free Radic Biol Med 30:225–231

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb DC, Gorman LG, Traystman RJ, Hurn PD (1998) Low molecular weight iron in cerebral ischemic acidosis in vivo. Stroke 29:487–492 (discussion 493)

    CAS  PubMed  Google Scholar 

  • Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103:13612–13617

    Article  CAS  PubMed  Google Scholar 

  • Lovell MA (2009) A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer’s disease. J Alzheimers Dis 16:471–483

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mackenzie B, Ujwal ML, Chang MH, Romero MF, Hediger MA (2006) Divalent metal-ion transporter DMT1 mediates both H+-coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch 451:544–558

    Article  CAS  PubMed  Google Scholar 

  • Marciani P, Trotti D, Hediger MA, Monticelli G (2004) Modulation of DMT1 activity by redox compounds. J Membr Biol 197:91–99

    Article  CAS  PubMed  Google Scholar 

  • McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437S–1446S

    CAS  PubMed  Google Scholar 

  • Meguro R, Asano Y, Odagiri S, Li C, Shoumura K (2008) Cellular and subcellular localizations of nonheme ferric and ferrous iron in the rat brain: a light and electron microscopic study by the perfusion-Perls and -Turnbull methods. Arch Histol Cytol 71:205–222

    Article  CAS  PubMed  Google Scholar 

  • Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffmann A, Kettenmann H, Moran A (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48:145–155

    Article  PubMed  Google Scholar 

  • Norgaard-Nielsen K, Gether U (2006) Zn2+ modulation of neurotransmitter transporters. Handb Exp Pharmacol 1–22

  • Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH (2006) Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med 84:349–364

    Article  CAS  PubMed  Google Scholar 

  • Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375

    Article  CAS  PubMed  Google Scholar 

  • Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 66:972–980

    Article  CAS  PubMed  Google Scholar 

  • Sheline CT, Takata T, Ying H, Canzoniero LM, Yang A, Yu SP, Choi DW (2004) Potassium attenuates zinc-induced death of cultured cortical astrocytes. Glia 46:18–27

    Article  PubMed  Google Scholar 

  • Simovich M, Hainsworth LN, Fields PA, Umbreit JN, Conrad ME (2003) Localization of the iron transport proteins Mobilferrin and DMT-1 in the duodenum: the surprising role of mucin. Am J Hematol 74:32–45

    Article  CAS  PubMed  Google Scholar 

  • Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G, Frederickson CJ (2000) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res 852:268–273

    Article  CAS  PubMed  Google Scholar 

  • Tiffany-Castiglioni E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22:577–592

    Article  CAS  Google Scholar 

  • Tulpule K, Robinson SR, Bishop GM, Dringen R (2010) Uptake of ferrous iron by cultured astrocytes. J Neurosci Res 88:563–571

    CAS  PubMed  Google Scholar 

  • Varea E, Alonso-Llosa G, Molowny A, Lopez-Garcia C, Ponsoda X (2006) Capture of extracellular zinc ions by astrocytes. Glia 54:304–315

    Article  PubMed  Google Scholar 

  • Wang XS, Ong WY, Connor JR (2001) A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J Neurocytol 30:353–360

    Article  PubMed  Google Scholar 

  • Waring P (2005) Redox active calcium ion channels and cell death. Arch Biochem Biophys 434:33–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

GMB was supported by a National Health and Medical Research Council Peter Doherty Fellowship (ID: 284393), and RD was supported by NeuroSciences Victoria for a Senior Research Fellowship. This work was supported by an NHMRC Project Grant (ID: 334129) to SRR and RD and also by the School of Psychology and Psychiatry, Monash University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenda M. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, G.M., Scheiber, I.F., Dringen, R. et al. Synergistic accumulation of iron and zinc by cultured astrocytes. J Neural Transm 117, 809–817 (2010). https://doi.org/10.1007/s00702-010-0420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0420-9

Keywords

Navigation