Skip to main content
Log in

Gelsolin in Cerebrospinal Fluid as a Potential Biomarker of Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gelsolin is an actin regulatory protein that generally distributed in a wide variety of body tissues, especially the brain tissues and cerebrospinal fluid. In this study we found that lumbar CSF-gelsolin concentrations markedly decreased in epileptic patients by enzyme linked immunosorbent assay. In order to help judge the result, we determined gelsolin expression in temporal lobe tissues of patients with temporal lobe epilepsy using double-label immunofluorescence to location and using western blot to quantitation. Then we observed that gelsolin was co-expressed with microtubule-associated protein-2 in axons and cytoplasms of neurons and gelsolin protein level was also down-regulated in temporal lobe tissues of epileptic patients. Our findings suggested that CSF-gelsolin level might reflect the alteration of gelsolin in brain tissue of epileptic patients and CSF-gelsolin seems to be a potential biomarker for epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith D, Defalla BA, Chadwick DW (1999) The misdiagnosis of epilepsy and the management of refractory epilepsy in a specialist clinic. QJM 92:15–23

    Article  PubMed  CAS  Google Scholar 

  2. Benbadis S (2009) The differential diagnosis of epilepsy: a critical review. Epilepsy Behav 15:15–21

    Article  PubMed  CAS  Google Scholar 

  3. Kanner AM, Morris HH, Luders H et al (1990) Supplementary motor seizures mimicking pseudoseizures: some clinical differences. Neurology 40:1404–1407

    PubMed  CAS  Google Scholar 

  4. Hinson VK, Haren WB (2006) Psychogenic movement disorders. Lancet Neurol 5:695–700

    Article  PubMed  Google Scholar 

  5. Sato M, Yamauchi T (1993) Biological study on pathophysiology of epilepsy: secondary brain disorders following ictus. Jpn J Psychiatry Neurol 47:223–224

    PubMed  CAS  Google Scholar 

  6. Brunnstrom H, Rawshani N, Zetterberg H et al (2010) Cerebrospinal fluid biomarker results in relation to neuropathological dementia diagnoses. Alzheimers Dement 6:104–109

    Article  PubMed  Google Scholar 

  7. Matsumoto N, Kitayama H, Kitada M et al (2003) Isolation of a set of genes expressed in the choroid plexus of the mouse using suppression subtractive hybridization. Neuroscience 117:405–415

    Article  PubMed  CAS  Google Scholar 

  8. Ohnishi M, Matsumoto T, Nagashio R et al (2009) Proteomics of tumor-specific proteins in cerebrospinal fluid of patients with astrocytoma: usefulness of gelsolin protein. Pathol Int 59:797–803

    Article  PubMed  CAS  Google Scholar 

  9. Nag S, Ma Q, Wang H et al (2009) Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin. Proc Natl Acad Sci USA 106:13713–13718

    Article  PubMed  CAS  Google Scholar 

  10. Li GH, Arora PD, Chen Y, et al (2011) Multifunctional roles of gelsolin in health and diseases. Med Res Rev 31: n/a. doi:10.1002/med.20231

  11. Sun HQ, Yamamoto M, Mejillano M et al (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274:33179–33182

    Article  PubMed  CAS  Google Scholar 

  12. Kwiatkowski DJ, Stossel TP, Orkin SH et al (1986) Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323:455–458

    Article  PubMed  CAS  Google Scholar 

  13. Yin HL, Stossel TP (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281:583–586

    Article  PubMed  CAS  Google Scholar 

  14. McGough AM, Staiger CJ, Min JK et al (2003) The gelsolin family of actin regulatory proteins: modular structures, versatile functions. FEBS Lett 552:75–81

    Article  PubMed  CAS  Google Scholar 

  15. Janmey PA, Iida K, Yin HL et al (1987) Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem 262:12228–12236

    PubMed  CAS  Google Scholar 

  16. Yin HL, Albrecht JH, Fattoum A (1981) Identification of gelsolin, a Ca2+ -dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol 91:901–906

    Article  PubMed  CAS  Google Scholar 

  17. Meerschaert K, De Corte V, De Ville Y et al (1998) Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. EMBO J 17:5923–5932

    Article  PubMed  CAS  Google Scholar 

  18. Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516

    Article  PubMed  CAS  Google Scholar 

  19. Bridgman PC, Dailey ME (1989) The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol 108:95–109

    Article  PubMed  CAS  Google Scholar 

  20. Furnish EJ, Zhou W, Cunningham CC et al (2001) Gelsolin overexpression enhances neurite outgrowth in PC12 cells. FEBS Lett 508:282–286

    Article  PubMed  CAS  Google Scholar 

  21. Hartwig JH, Chambers KA, Stossel TP (1989) Association of gelsolin with actin filaments and cell membranes of macrophages and platelets. J Cell Biol 108:467–479

    Article  PubMed  CAS  Google Scholar 

  22. Koya RC, Fujita H, Shimizu S et al (2000) Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem 275:15343–15349

    Article  PubMed  CAS  Google Scholar 

  23. Paunio T, Kangas H, Heinonen O et al (1998) Cells of the neuronal lineage play a major role in the generation of amyloid precursor fragments in gelsolin-related amyloidosis. J Biol Chem 273:16319–16324

    Article  PubMed  CAS  Google Scholar 

  24. Dong JH, Ying GX, Liu X et al (2006) Lesion-induced gelsolin upregulation in the hippocampus following entorhinal deafferentation. Hippocampus 16:91–100

    Article  PubMed  CAS  Google Scholar 

  25. Cunningham CC, Stossel TP, Kwiatkowski DJ (1991) Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 251:1233–1236

    Article  PubMed  CAS  Google Scholar 

  26. Witke W, Sharpe AH, Hartwig JH et al (1995) Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81:41–51

    Article  PubMed  CAS  Google Scholar 

  27. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    Article  PubMed  CAS  Google Scholar 

  28. Vouyiouklis DA, Brophy PJ (1997) A novel gelsolin isoform expressed by oligodendrocytes in the central nervous system. J Neurochem 69:995–1005

    Article  PubMed  CAS  Google Scholar 

  29. Westberg JA, Zhang KZ, Andersson LC (1999) Regulation of neural differentiation by normal and mutant (G654A, amyloidogenic) gelsolin. FASEB J 13:1621–1626

    PubMed  CAS  Google Scholar 

  30. Roth LW, Bormann P, Wiederkehr C et al (1999) Beta-thymosin, a modulator of the actin cytoskeleton is increased in regenerating retinal ganglion cells. Eur J Neurosci 11:3488–3498

    Article  PubMed  CAS  Google Scholar 

  31. Ji L, Chauhan A, Chauhan V (2010) Upregulation of cytoplasmic gelsolin, an amyloid-beta-binding protein, under oxidative stress conditions: involvement of protein kinase C. J Alzheimers Dis 19:829–838

    PubMed  CAS  Google Scholar 

  32. Seino M (2006) Classification criteria of epileptic seizures and syndromes. Epilepsy Res 70(Suppl 1):S27–S33

    Article  PubMed  Google Scholar 

  33. Lu Y, Xue T, Yuan J et al (2009) Increased expression of TGFbeta type I receptor in brain tissues of patients with temporal lobe epilepsy. Clin Sci (Lond) 117:17–22

    Article  CAS  Google Scholar 

  34. Gardiner J, Marc J (2010) Disruption of normal cytoskeletal dynamics may play a key role in the pathogenesis of epilepsy. Neuroscientist 16:28–39

    Article  PubMed  Google Scholar 

  35. Roth SU, Sommer C, Mundel P et al (2001) Expression of synaptopodin, an actin-associated protein, in the rat hippocampus after limbic epilepsy. Brain Pathol 11:169–181

    Article  PubMed  CAS  Google Scholar 

  36. Xiao F, Wang XF, Li JM et al (2008) Overexpression of N-WASP in the brain of human epilepsy. Brain Res 1233:168–175

    Article  PubMed  CAS  Google Scholar 

  37. Luo J, Xu Y, Zhu Q, et al (2011) Expression pattern of Mical-1 in the temporal neocortex of patients with intractable temporal epilepsy and pilocarpine-induced rat model. Synapse 65:n/a. doi:10.1002/syn.20961

  38. Goncalves AF, Dias NG, Moransard M et al (2010) Gelsolin is required for macrophage recruitment during remyelination of the peripheral nervous system. Glia 58:706–715

    PubMed  Google Scholar 

  39. Rashevsky N (1972) A neural circuit which exhibits some features of epileptic attacks. Bull Math Biophys 34:71–78

    Article  PubMed  CAS  Google Scholar 

  40. Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43:219–227

    Article  PubMed  Google Scholar 

  41. Percha B, Dzakpasu R, Zochowski M et al (2005) Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E Stat Nonlin Soft Matter Phys 72:031909

    Article  PubMed  Google Scholar 

  42. Furukawa K, Fu W, Li Y et al (1997) The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci 17:8178–8186

    PubMed  CAS  Google Scholar 

  43. Armijo JA, de las Cuevas I, Adin J (2000) Ion channels and epilepsy. Rev Neurol 30(1):S25–S41

    PubMed  Google Scholar 

  44. Pottiez G, Sevin E, Cecchelli R et al (2009) Actin, gelsolin and filamin-A are dynamic actors in the cytoskeleton remodelling contributing to the blood brain barrier phenotype. Proteomics 9:1207–1219

    Article  PubMed  CAS  Google Scholar 

  45. van Vliet EA, da Costa Araujo S, Redeker S et al (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521–534

    Article  PubMed  Google Scholar 

  46. Hauptman JS (2010) From the bench to the bedside: Breaking down the blood-brain barrier, decoding the habenula, understanding hand choice, and the role of ketone bodies in epilepsy. Surg Neurol Int 1:86

    Article  PubMed  Google Scholar 

  47. Tomkins O, Feintuch A, Benifla M et al (2011) Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol 2011:765923

    PubMed  Google Scholar 

  48. Hu Y, Huang Y, Quan F et al (2010) Comparison of the retention rates between carbamazepine and valproate as an initial monotherapy in Chinese patients with partial seizures: a ten-year follow-up, observational study. Seizure 20:208–213

    Article  PubMed  Google Scholar 

  49. Aroniadou-Anderjaska V, Fritsch B, Qashu F et al (2008) Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 78:102–116

    Article  PubMed  CAS  Google Scholar 

  50. Hoshikawa Y, Kwon HJ, Yoshida M et al (1994) Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp Cell Res 214:189–197

    Article  PubMed  CAS  Google Scholar 

  51. Yildirim F, Gertz K, Kronenberg G et al (2008) Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp Neurol 210:531–542

    Article  PubMed  CAS  Google Scholar 

  52. Kulakowska A, Drozdowski W, Sadzynski A et al (2008) Gelsolin concentration in cerebrospinal fluid from patients with multiple sclerosis and other neurological disorders. Eur J Neurol 15:584–588

    Article  PubMed  CAS  Google Scholar 

  53. Lovell MA, Lynn BC, Xiong S et al (2008) An aberrant protein complex in CSF as a biomarker of Alzheimer disease. Neurology 70:2212–2218

    Article  PubMed  CAS  Google Scholar 

  54. Piubelli C, Fiorini M, Zanusso G et al (2006) Searching for markers of Creutzfeldt-Jakob disease in cerebrospinal fluid by two-dimensional mapping. Proteomics 6(1):S256–S261

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (NO. 30870877). We thank Xuanwu Hospital of Capital Medical University, Guangzhou 39 Brain Hospital, Xinhua Brain Hospital of Hubei Province, Xinqiao Hospital of the Third Military Medical University for their support in brain tissue collection. We also thank the patients for their participation in this study. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Wang.

Additional information

Xi Peng and Xiaogang Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Zhang, X., Wang, L. et al. Gelsolin in Cerebrospinal Fluid as a Potential Biomarker of Epilepsy. Neurochem Res 36, 2250–2258 (2011). https://doi.org/10.1007/s11064-011-0549-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0549-4

Keywords

Navigation