Skip to main content
Log in

The TrkB-Positive Dopaminergic Neurons are Less Sensitive to MPTP Insult in the Substantia Nigra of Adult C57/BL Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tyrosine kinase receptors TrkB and TrkC mediate neuroprotective effects of the brain-derived neurotrophic factor (BDNF) and neurotrophins in the dopaminergic nigro-striatal system, but it is obscure about their responses or expression changes in the injured substantia nigra under Parkinson’s disease. In present study, immunofluorescence, Fluoro-Jade staining and laser scanning confocal microscopy were applied to investigate distribution and changes of TrkB and TrkC in the dopamine neurons of the substantia nigra by comparison of control and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. It revealed that TrkB and TrkC-immunoreactivities were substantially localized in cytoplasm and cell membrane of the substantia nigra neurons of control adults. While neurons double-labeled with tyrosine hydroxylase (TH)/TrkB, or TH/TrkC were distributed in a large numbers in the substantia nigra of controls, they apparently went down at 36.2–65.7% of normal level, respectively following MPTP insult. In MPTP model, cell apoptosis or degeneration of nigral neurons were confirmed by caspase-3 and Fluoro-Jade staining. More interestingly, TH/TrkB-positive neurons survived more in cell numbers in comparison with that of TH/TrkC-positive ones in the MPTP model. This study has indicated that TrkB-containing dopamine neurons are less sensitive in the substantia nigra of MPTP mouse model, suggesting that specific organization of Trks may be involved in neuronal vulnerability to MPTP insult, and BDNF-TrkB signaling may play more important role in protecting dopamine neurons and exhibit therapeutic potential for Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

GDNF:

Glial-derived neurotrophic factor

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NGF:

Nerve growth factor

NT-3:

Neurotrophins-3

PB:

Phosphate buffer

PD:

Parkinson’s disease

TH:

Tyrosine hydroxylase

Trks:

Tyrosine kinase receptors

References

  1. Amino S, Itakura M, Ohnishi H, Tsujimura J, Koizumi S, Takei N, Takahashi M (2002) Nerve growth factor enhances neurotransmitter release from PC12 cells by increasing Ca(2+)-responsible secretory vesicles through the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. J Biochem 131:887–894

    PubMed  CAS  Google Scholar 

  2. Bian GL, Wei LC, Shi M, Wang YQ, Cao R, Chen LW (2007) Fluoro-Jade C can specifically stain the degenerative neurons in the substantia nigra of the MPTP-treated C57BL/6 mice. Brain Res 1150:55–61

    Article  PubMed  CAS  Google Scholar 

  3. Blöchl A, Sirrenberg C (1996) Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J Biol Chem 271:21100–21107

    Article  PubMed  Google Scholar 

  4. Canudas AM, Pezzi S, Canals JM, Pallàs M, Alberch J (2005) Endogenous brain-derived neurotrophic factor protects dopaminergic nigral neurons against transneuronal degeneration induced by striatal excitotoxic injury. Brain Res Mol Brain Res 134:147–154

    Article  PubMed  CAS  Google Scholar 

  5. Cass WA, Peters LE, Harned ME, Seroogy KB (2006) Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci 1074:272–281

    Article  PubMed  CAS  Google Scholar 

  6. Chaisuksunt V, Campbell G, Zhang Y, Schachner M, Lieberman AR, Anderson PN (2003) Expression of regeneration-related molecules in injured and regenerating striatal and nigral neurons. J Neurocytol 32:161–183

    Article  PubMed  CAS  Google Scholar 

  7. Chen LW, Hu HJ, Liu HL, Yung KK, Chan YS (2004) Identification of brain-derived neurotrophic factor in nestin-expressing astroglial cells in the neostriatum of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice. Neuroscience 126:941–953

    Article  PubMed  CAS  Google Scholar 

  8. Chen LW, Yung KK, Chan YS, Shum DK, Bolam JP (2008) The proNGF-p75NTR-sortilin signalling complex as new target for the therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 7:512–523

    Article  PubMed  CAS  Google Scholar 

  9. Chen LW, Zhang JP, Kwok-Yan Shum D, Chan YS (2006) Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of MPTP-treated C57/Bl mice. J Comp Neurol 497:898–909

    Article  PubMed  CAS  Google Scholar 

  10. Conti G, Gale K, Kondratyev A (2009) Immunohistochemical evaluation of the protein expression of nerve growth factor and its TrkA receptor in rat limbic regions following electroshock seizures. Neurosci Res 65:201–209

    Article  PubMed  CAS  Google Scholar 

  11. Deierborg T, Soulet D, Roybon L, Hall V, Brundin P (2008) Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol 85:407–432

    Article  PubMed  CAS  Google Scholar 

  12. Du Y, Li X, Yang D, Zhang X, Chen S, Huang K, Le W (2008) Multiple molecular pathways are involved in the neuroprotection of GDNF against proteasome inhibitor induced dopamine neuron degeneration in vivo. Exp Biol Med (Maywood) 233:881–890

    Article  CAS  Google Scholar 

  13. Erickson J, Brosenitsch T, Katz D (2001) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21:581–589

    PubMed  CAS  Google Scholar 

  14. Falk T, Zhang S, Sherman SJ (2009) Pigment epithelium derived factor (PEDF) is neuroprotective in two in vitro models of Parkinson’s disease. Neurosci Lett 458:49–52

    Article  PubMed  CAS  Google Scholar 

  15. Gall CM, Gold SJ, Isackson PJ, Seroogy KB (1992) Brain-derived neurotrophic factor and neurotrophin-3 mRNAs are expressed in ventral midbrain regions containing dopaminergic neurons. Mol Cell Neurosci 3:56–63

    Article  PubMed  CAS  Google Scholar 

  16. Gibrat C, Bousquet M, Saint-Pierre M, Lévesque D, Calon F, Rouillard C, Cicchetti F (2010) Cystamine prevents MPTP-induced toxicity in young adult mice via the up-regulation of the brain-derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry 34:193–203

    Article  PubMed  CAS  Google Scholar 

  17. Granholm AC, Sanders LA, Crnic LS (2000) Loss of cholinergic phenotype in basalforebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp Neurol 161:647–663

    Article  PubMed  CAS  Google Scholar 

  18. Gyárfás T, Knuuttila J, Lindholm P, Rantamäki T, Castrén E (2010) Regulation of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol 30:361–368

    Article  PubMed  Google Scholar 

  19. Hagg T (1998) Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp Neurol 149:183–192

    Article  PubMed  CAS  Google Scholar 

  20. Hirata Y, Meguro T, Kiuchi K (2006) Differential effect of nerve growth factor on dopaminergic neurotoxin-induced apoptosis. J Neurochem 99:416–425

    Article  PubMed  CAS  Google Scholar 

  21. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    Article  PubMed  CAS  Google Scholar 

  22. Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14:335–347

    PubMed  CAS  Google Scholar 

  23. Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, Isohama Y, Izumi Y, Kume T, Shudo K, Akaike A (2009) Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 110:707–718

    Article  PubMed  CAS  Google Scholar 

  24. Longo FM, Massa SM (2004) Neurotrophin-based strategies for neuroprotection. J Alzheimers Dis 6(Suppl):S13–S17

    PubMed  CAS  Google Scholar 

  25. Mandel SA, Sagi Y, Amit T (2007) Rasagiline promotes regeneration of substantia nigra dopaminergic neurons in post-MPTP-induced parkinsonism via activation of tyrosine kinase receptor signaling pathway. Neurochem Res 32:1694–1699

    Article  PubMed  CAS  Google Scholar 

  26. Melchior B, Nerrière-Daguin V, Laplaud DA, Rémy S, Wiertlewski S, Neveu I, Naveilhan P, Meakin SO, Brachet P (2003) Ectopic expression of the TrkA receptor in adult dopaminergic mesencephalic neurons promotes retrograde axonal NGF transport and NGF-dependent neuroprotection. Exp Neurol 183:367–378

    Article  PubMed  CAS  Google Scholar 

  27. Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST (2003) Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 26:233–242

    Article  PubMed  CAS  Google Scholar 

  28. Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 60:277–290

    PubMed  Google Scholar 

  29. Nagatsu T (2002) Parkinson’s disease: changes in apoptosis-related factors suggesting possible gene therapy. J Neural Transm 109:731–745

    Article  PubMed  CAS  Google Scholar 

  30. Nishio T, Furukawa S, Akiguchi I, Sunohara N (1998) Medial nigral dopamine neurons have rich neurotrophin support in humans. Neuroreport 9:2847–2851

    Article  PubMed  CAS  Google Scholar 

  31. Numan S, Seroogy KB (1999) Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J Comp Neurol 403:295–308

    Article  PubMed  CAS  Google Scholar 

  32. Paredes D, Granholm AC, Bickford PC (2007) Effects of NGF and BDNF on baseline glutamate and dopamine release in the hippocampal formation of the adult rat. Brain Res 1141:56–64

    Article  PubMed  CAS  Google Scholar 

  33. Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K, Son YS, Kim YJ, Kim CJ, Kim YS, Chung JH (2003) Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s disease model. Exp Neurol 180:93–98

    Article  PubMed  Google Scholar 

  34. Porritt MJ, Batchelor PE, Howells DW (2005) Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 192:226–234

    Article  PubMed  CAS  Google Scholar 

  35. Roussa E, und Halbach O, Krieglstein K (2009) TGF-beta in dopamine neuron development, maintenance and neuroprotection. Adv Exp Med Biol 651:81–90

    Article  PubMed  CAS  Google Scholar 

  36. Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB, Bulvik S, Shemesh N, Krepel D, Cohen Y, Melamed E, Offen D (2009) Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of parkinson disease. Stem Cells Dev 18:1179–1190

    Article  PubMed  CAS  Google Scholar 

  37. Sagi Y, Mandel S, Amit T, Youdim MB (2007) Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis 25:35–44

    Article  PubMed  CAS  Google Scholar 

  38. Sauer H, Wong V, Björklund A (1995) Brain-derived neurotrophic factor and neurotrophin-4/5 modify neurotransmitter-related gene expression in the 6-hydroxydopamine-lesioned rat striatum. Neuroscience 65:927–933

    Article  PubMed  CAS  Google Scholar 

  39. Saylor AJ, Meredith GE, Vercillo MS, Zahm DS, McGinty JF (2006) BDNF heterozygous mice demonstrate age-related changes in striatal and nigral gene expression. Exp Neurol 199:362–372

    Article  PubMed  CAS  Google Scholar 

  40. Sobreviela T, Clary DO, Reichardt LF, Brandabur MM, Kordower JH, Mufson EJ (1994) TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J Comp Neurol 350:587–611

    Article  PubMed  CAS  Google Scholar 

  41. Somoza R, Juri C, Baes M, Wyneken U, Rubio FJ (2010) Intranigral transplantation of epigenetically-induced BDNF-secreting human mesenchymal stem cells: implications for cell-based therapies in parkinson s disease. Biol Blood Marrow Transplant [Epub ahead of print]

  42. Studer L, Spenger C, Seiler RW, Altar CA, Lindsay RM, Hyman C (1995) Comparison of the effects of the neurotrophins on the morphological structure of dopaminergic neurons in cultures of rat substantia nigra. Eur J Neurosci 7:223–233

    Article  PubMed  CAS  Google Scholar 

  43. Tam SY, Elsworth JD, Sladek JR Jr, Redmond DE Jr, Roth RH (1997) Identification of novel variants of trkC mRNA transcripts in brain of African green monkeys. Exp Neurol 143:172–176

    Article  PubMed  CAS  Google Scholar 

  44. Venero JL, Vizuete ML, Revuelta M, Vargas C, Cano J, Machado A (2000) Upregulation of BDNF mRNA and trkB mRNA in the nigrostriatal system and in the lesion site following unilateral transection of the medial forebrain bundle. Exp Neurol 161:38–48

    Article  PubMed  CAS  Google Scholar 

  45. Volpicelli F, Caiazzo M, Greco D, Consales C, Leone L, Perrone-Capano C, Colucci D’Amato L, di Porzio U (2007) Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro. J Neurochem 102:441–453

    Article  PubMed  CAS  Google Scholar 

  46. und Halbach O, Minichiello L, Unsicker K (2005) Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J 19:1740–1742

    Google Scholar 

  47. Wang YQ, Bian GL, Bai Y, Cao R, Chen LW (2008) Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int 53:56–62

    Article  PubMed  CAS  Google Scholar 

  48. Wang YQ, Bian GL, Wei LC, Cao R, Peng YF, Chen LW (2008) Nigrostriatal neurons in rat express the glial cell line-derived neurotrophic factor receptor subunit c-RET. Anat Rec 291:49–54

    Article  Google Scholar 

  49. Wu J, Yu W, Chen Y, Su Y, Ding Z, Ren H, Jiang Y, Wang J (2010) Intrastriatal transplantation of GDNF-engineered BMSCs and its neuroprotection in lactacystin-induced parkinsonian rat model. Neurochem Res 35:495–502

    Article  PubMed  CAS  Google Scholar 

  50. Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson’s disease. Biochim Biophys Acta 1792:676–687

    PubMed  CAS  Google Scholar 

  51. Yurek DM, Fletcher-Turner A (2001) Differential expression of GDNF, BDNF, and NT-3 in the aging nigrostriatal system following a neurotoxic lesion. Brain Res 891:228–235

    Article  PubMed  CAS  Google Scholar 

  52. Yurek DM, Seroogy KB (2000) Differential expression of neurotrophin and neurotrophin receptor mRNAs in and adjacent to fetal midbrain grafts implanted into the dopamine-denervated striatum. J Comp Neurol 423:462–473

    Article  PubMed  CAS  Google Scholar 

  53. Zaman V, Nelson ME, Gerhardt GA, Rohrer B (2004) Neurodegenerative alterations in the nigrostriatal system of trkB hypomorphic mice. Exp Neurol 190:337–346

    Article  PubMed  CAS  Google Scholar 

  54. Zhou J, Bradford HF, Stern GM (1997) Influence of BDNF on the expression of the dopaminergic phenotype of tissue used for brain transplants. Brain Res Dev Brain Res 100:43–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation (81071609, 30970862 and 30772279) and Basic Research Program of China (2011CB504103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, YX., Xia, Y., Jiao, XY. et al. The TrkB-Positive Dopaminergic Neurons are Less Sensitive to MPTP Insult in the Substantia Nigra of Adult C57/BL Mice. Neurochem Res 36, 1759–1766 (2011). https://doi.org/10.1007/s11064-011-0491-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0491-5

Keywords

Navigation