Skip to main content

TGF-β in Dopamine Neuron Development, Maintenance and Neuroprotection

  • Chapter
Development and Engineering of Dopamine Neurons

Abstract

Transforming growth factor betas (TGF-βs) are multifunctional cytokines with widespread distribution. In the nervous system the biological effects of TGF-β cover regulation of proliferation, migration, differentiation, survival and death. Specifically, the effects of TGF-β on mesencephalic DAergic neurons extend from induction and specification of the dopaminergic phenotype via promotion of survival to neuroprotection in animal models of parkinsonism. Experimental in vitro and in vivo models have contributed to a better understanding of the putative mechanisms underlying the effects of TGF-β on DAergic neurons and unravelled synergisms between members of the TGF-β superfamily. In this chapter, we will review the literature available with focus on TGF-β proper and glial cell-line-derived neurotrophic factor (GDNF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts AB, Sporn MB. The transforming growth factor-βs. In: Sporn MB, Roberts AB, eds. Handbook of Experimental Pharmacology. Heidelberg: Springer Verlag, 1990; 95:419–472.

    Google Scholar 

  2. Roberts AB, Anzano MA, Lamb LC et al. New class of transforming growth factors potentiated by epidermal growth factor: isolation from nonneoplastic tissues. Proc Natl Acad Sci USA 1981; 78:5339–5343.

    Article  PubMed  CAS  Google Scholar 

  3. Miyazono K, Suzuki H, Imamura T. Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 2003; 94:230–234.

    Article  PubMed  CAS  Google Scholar 

  4. McDonald NQ, Hendrickson WA. A structural superfamily of growth factors containing a cystine knot motif. Cell 1993; 73:421–424.

    Article  PubMed  CAS  Google Scholar 

  5. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003; 116:217–224.

    Article  PubMed  CAS  Google Scholar 

  6. Rifkin DB. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 2005; 280:7409–7412.

    Article  PubMed  CAS  Google Scholar 

  7. Miyazono K, ten Dijke P, Heldin CH. TGF-beta signaling by Smad proteins. Adv Immunol 2000; 75:115–157.

    Article  PubMed  CAS  Google Scholar 

  8. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113:685–700.

    Article  PubMed  CAS  Google Scholar 

  9. Krieglstein K. Transforming growth factor-betas in the brain. Handbook of Neurochemistry and Molecular Neurobiology 2006:123–141.

    Google Scholar 

  10. Böttner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling and roles in nervous system development and functions. J Neurochem 2000; 75:2227–2240.

    Article  PubMed  Google Scholar 

  11. Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998; 54:71–85.

    Article  PubMed  CAS  Google Scholar 

  12. Lin LF, Doherty DH, Lile JD et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260:1130–1132.

    Article  PubMed  CAS  Google Scholar 

  13. Unsicker K, Suter-Crazzolara C, Krieglstein K. Neurotrophic roles of GDNF and related factors. In: Hefti F, ed. Handbook of Experimental Pharmacology 134: Neurotrophic Factors. Heidelberg: Springer, 1999:189–224.

    Google Scholar 

  14. Smidt MP, Burbach PH. How to make a mesodiencephalic dopaminergic neuron. Nature Rev Neurosci 2007; 8:21–32.

    Article  CAS  Google Scholar 

  15. Hynes M, Porter JA, Chinag C et al. Induction of midbrain dopaminergic neurons by Sonic Hedgehog. Neuron 1995a; 15:35–44.

    Article  PubMed  CAS  Google Scholar 

  16. Hynes M, Poulsen K, Tessier-Lavigne M et al. Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 1995b; 80:95–101.

    Article  PubMed  CAS  Google Scholar 

  17. Hynes M, Rosenthal A. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 1999; 9:26–36.

    Article  PubMed  CAS  Google Scholar 

  18. Ye W, Shimamura K, Rubenstein JR et al. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 1998; 93:755–766.

    Article  PubMed  CAS  Google Scholar 

  19. Crossley PH, Martinez S, Martin GR. Midbrain development induced by FGF8 in the chick embryo. Nature 1996; 380:66–68.

    Article  PubMed  CAS  Google Scholar 

  20. Farkas LM, Dünker N, Roussa E et al. Transforming growth factor-βs are essential fort he development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 2003; 23:5178–5186.

    PubMed  CAS  Google Scholar 

  21. Holzschuh J, Hauptmann G, Driever W. Genetic analysis of the roles of Hh, FGF8 and Nodal signaling during catecholaminergic system development in the zebrafish brain. J Neurosci 2003; 23:5507–5519.

    PubMed  CAS  Google Scholar 

  22. Roussa E, Wiehle M, Dünker N et al. Transforming growth factor β is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells 2006; 24:2120–2129.

    Article  PubMed  CAS  Google Scholar 

  23. Roussa E, Krieglstein K. Induction and specification of midbrain dopaminergic cell: focus on SHH, FGF8 and TGF-β. Cell Tissue Res 2004; 318:23–33.

    Article  PubMed  CAS  Google Scholar 

  24. Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic neurons. Proc Natl Acad Sci USA 1998; 95:4013–4018.

    Article  PubMed  CAS  Google Scholar 

  25. Smidt MP, Smits SM, Bouwmeester H et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene pitx3. Development 2004; 131:1145–1155.

    Article  PubMed  CAS  Google Scholar 

  26. Simon HH, Saueressig H, Wurst W et al. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 2001; 21:3126–3134.

    PubMed  CAS  Google Scholar 

  27. Smidt MP, Asbreuk CH, Cox JJ et al. A second pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 2000; 3:337–341.

    Article  PubMed  CAS  Google Scholar 

  28. Andersson E, Tryggvason U, Deng Q et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 2006; 124:393–405.

    Article  PubMed  CAS  Google Scholar 

  29. Unsicker K, Meier C, Krieglstein K et al. Expression, localization and function of transforming growth factor-betas in embryonic chick spinal cord, hindbrain and dorsal root ganglia. J Neurobiol 1996; 29:262–276.

    Article  PubMed  CAS  Google Scholar 

  30. Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407–413.

    Article  PubMed  CAS  Google Scholar 

  31. Reynolds BA, Weiss S. Clonal and population analysis demonstrate that an EGF-responsive mammmlian embryonic CNS precursor is a stem cell. Dev Biol 1996; 175:1–13.

    Article  PubMed  CAS  Google Scholar 

  32. Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001; 440:342–377.

    Article  PubMed  CAS  Google Scholar 

  33. Rink E, Wullimann MF. Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res 2002; 137:89–100.

    Article  PubMed  CAS  Google Scholar 

  34. Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 2001; 889:316–330.

    Article  PubMed  CAS  Google Scholar 

  35. Sampath K, Rubinstain AL, Chang AM et al. Induction of the zebrafish ventral brain and floorplate requires Cyclops/nodal signaling. Nature 1998; 395:185–189.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang J, Talbot WS, Schier AF. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 1998; 92:241–251.

    Article  PubMed  CAS  Google Scholar 

  37. Schauerte HE, van Eeden FJ, Fricke C et al. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 1998; 125:2983–299.

    PubMed  CAS  Google Scholar 

  38. Varga ZM, Amores A, Lewis KE et al. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development 2001; 128:3497–3509.

    PubMed  CAS  Google Scholar 

  39. Reifers F, Bohli H, Walsh EC et al. M Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 1998; 125:2381–2395.

    PubMed  CAS  Google Scholar 

  40. Gripp KW, Wotton D, Edwards MC et al. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 2000; 25:205–208.

    Article  PubMed  CAS  Google Scholar 

  41. Roessler E, Belloni E, Gaudenz K et al. Mutations in the human Sonic hedgehog gene cause holoprocencephaly. Nat Genet 1996; 357–360.

    Google Scholar 

  42. Shen J, Walsch CA. Targeted disruption of Tgif, the mouse otholog of a human holoprocencephaly gene, does not result in holoproncencephaly in mice. Mol Cel Biol 2005; 25:3639–3647.

    Article  CAS  Google Scholar 

  43. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nature Rev 2002; 3:383–394.

    Article  CAS  Google Scholar 

  44. Sariola H, Saarma M. Novel functions and signaling pathways for GDNF. J Cell Sci 2003; 116:3855–3862.

    Article  PubMed  CAS  Google Scholar 

  45. Moore MW, Klein RD, Farinas I et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382:76–79.

    Article  PubMed  CAS  Google Scholar 

  46. Pichel JG, Shen L, Hui SZ et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382:73–76.

    Article  PubMed  CAS  Google Scholar 

  47. Sanchez MP, Silos-Santiago I, Frisen J et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382:70–73.

    Article  PubMed  CAS  Google Scholar 

  48. Tomac AC, Agulnick AD, Haughey N et al. Effects of cerebral ischemia in mice deficient in Persephin. Proc Natl Ac Sci USA 2002; 99:9521–9526.

    Article  CAS  Google Scholar 

  49. Heuckeroth RO, Enomoto H, Grider JR et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory and parasympathetic neurons. Neuron 1999; 22:253–263.

    Article  PubMed  CAS  Google Scholar 

  50. Honma Y, Araki T, Gianino S et al. Artemin is a vascular-derived neurotrophic factor for developing sympathetic neurons. Neuron 2002; 35:267–282.

    Article  PubMed  CAS  Google Scholar 

  51. Roussa E, Krieglstein K. GDNF promotes neuronal diffrentiation and dopaminergic development of mouse mesencephalic neurospheres. Neurosci Let 2004; 361:52–55.

    Article  CAS  Google Scholar 

  52. Krieglstein K, Henheik P, Farkas L et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 1998; 18:9822–9834.

    PubMed  CAS  Google Scholar 

  53. Schober A, Peterziel H, von Bartheld CS et al. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis 2007; 25:378–391.

    Article  PubMed  CAS  Google Scholar 

  54. Krieglstein K. Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res 2004; 318:73–80.

    Article  PubMed  CAS  Google Scholar 

  55. Krieglstein K, Suter-Crazzolara C, Fischer WH et al. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 1995; 14:736–742.

    PubMed  CAS  Google Scholar 

  56. Poulsen KT, Armanini MP, Klein RD et al. TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 1994; 13:1245–1252.

    Article  PubMed  CAS  Google Scholar 

  57. Chalazonitis A, Kalberg J, Twardzik DR et al. Transforming growth factor beta has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Dev Biol 1992; 152:121–132.

    Article  PubMed  CAS  Google Scholar 

  58. Martinou JC, Le Van Thai A, Valette A et al. Transforming growth factor beta 1 is a potent survival factor for rat embryo motoneurons in culture. Dev Brain Res 1990; 52:175–181.

    Article  CAS  Google Scholar 

  59. Krieglstein K, Unsicker K. Transforming growth factor-beta promotes survival of midbrain dopaminergic neurons and protects them against N-methyl-4-phenylpyridinium ion toxicity. Neuroscience 1994; 63:1189–1196.

    Article  PubMed  CAS  Google Scholar 

  60. Roussa E, Farkas LM, Krieglstein K. TGF-β promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol Dis 2004; 16:300–310.

    Article  PubMed  CAS  Google Scholar 

  61. Oo TF, Burke RE. The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Brain Res Dev Brain Res 1997; 98:191–196.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang J, Pho V, Bonasera SJ et al. Essential function of HIPK2 in TGF-beta-dependent survival of midbrain dopamine neurons. Nat Neurosci 2007; 10:77–86.

    Article  PubMed  CAS  Google Scholar 

  63. Krieglstein K, Suter-Crazzolara C, Hotten G et al. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 1995; 42:724–32.

    Article  PubMed  CAS  Google Scholar 

  64. Jordan J, Böttner M, Schluesener HJ et al. Bone morphogenetic proteins: neurotrophic roles for midbrain dopaminergic neurons and implications of astroglial cells. Eur J neurosci 1997; 9:1699–1709.

    Article  PubMed  CAS  Google Scholar 

  65. Strelau J, Schober A, Sullivan A et al. Growth/differentiation factor-15 (GDF-15), a novel member of the TGF-beta superfamily, promotes survival of lesioned mesencephalic dopaminergic neurons in vitro and in vivo and is induced in neurons following cortisal lesioning. J Neural Transm 2003; 65 (Suppl):197–203.

    Google Scholar 

  66. Beck KD, Valverde J, Alexi T et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 1995; 373:339–341.

    Article  PubMed  CAS  Google Scholar 

  67. Bowenkamp KE, Hoffman AF, Gerhardt GA et al. Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol 1995; 355:479–489.

    Article  PubMed  CAS  Google Scholar 

  68. Hoffer BJ, Hoffman A, Bowenkamp K et al. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 1994; 182:107–111.

    Article  PubMed  CAS  Google Scholar 

  69. Kearns CM, Gash DM. GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res 1995; 672:104–111.

    Article  PubMed  CAS  Google Scholar 

  70. Sauer H, Rosenblad C, Bjorklund A: Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci USA 1995; 92:8935–8939.

    Article  PubMed  CAS  Google Scholar 

  71. Tomac A, Lindqvist E, Lin LF et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373:335–339.

    Article  PubMed  CAS  Google Scholar 

  72. Gash DM, Zhang Z, Ovadia A et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; 380:252–255.

    Article  PubMed  CAS  Google Scholar 

  73. Kordower JH, Emborg ME, Bloch J et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290:767–773.

    Article  PubMed  CAS  Google Scholar 

  74. Mandel RJ, Spratt SK, Snyder RO et al. Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc Natl Acad Sci USA 1997; 94:14083–14088.

    Article  PubMed  CAS  Google Scholar 

  75. Kirik D, Rosenblad C, Bjorklund A. Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 2000; 12:3871–3882.

    Article  PubMed  CAS  Google Scholar 

  76. Oo TF, Kholodilov N, Burke RE. Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 2003; 23:5141–5148.

    PubMed  CAS  Google Scholar 

  77. Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9:589–595.

    Article  PubMed  CAS  Google Scholar 

  78. Slevin JT, Gash DM, Smith CD et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J Neurosurg 2007; 106:614–620.

    Article  PubMed  CAS  Google Scholar 

  79. Patel NK, Bunnage M, Plaha P et al. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 2005; 57:298–302.

    Article  PubMed  CAS  Google Scholar 

  80. Slevin JT, Gerhardt GA, Smith CD et al. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 2005; 102:216–222.

    Article  PubMed  CAS  Google Scholar 

  81. Nutt JG, Burchiel KJ, Comella CL et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003; 60:69–73.

    PubMed  CAS  Google Scholar 

  82. Lang AE, Gill S, Patel NK et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006; 59:459–466.

    Article  PubMed  CAS  Google Scholar 

  83. Sherer TB, Fiske BK, Svendsen CN et al. Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord 2006; 21:136–41.

    Article  PubMed  Google Scholar 

  84. Krieglstein K, Unsicker K. distinct modulatory actions of TGF-beta and LIF on neurotrophin-mediated survival of developing sensory neurons. Neurochem Res 1996; 21:843–50.

    Article  PubMed  CAS  Google Scholar 

  85. Peterziel H, Unsicker K, Krieglstein K. TGFß induces GDNF responsiveness in neurons by recruitment of GFRα1 to the plasma membrane. J Cell Biol 2002; 159:157–167.

    Article  PubMed  CAS  Google Scholar 

  86. Peterziel H, Paech T, Strelau J et al. Specificity in the crosstalk of TGFß/GDNF family members is determined by distinct GFR alpha receptors. J Neurochem Online Accepted Articles Accepted article online: 2007 doi: 10.1111/j.1471-4159.2007.04962.x.

    Google Scholar 

  87. Lindholm P, Voutilainen MH, Lauren J et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 2007; 448:73–77.

    Article  PubMed  CAS  Google Scholar 

  88. Petrova P, Raibekas A, Pevsner J et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 2003; 20:173–188.

    Article  PubMed  CAS  Google Scholar 

  89. Petrova PS, Raibekas A, Pevsner J et al. Discovering novel phenotype-selective neurotrophic factors to treat neurodegenerative diseases. Prog Brain Res 2004; 146:168–183.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Krieglstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Roussa, E., von Bohlen und Halback, O., Krieglstein, K. (2009). TGF-β in Dopamine Neuron Development, Maintenance and Neuroprotection. In: Pasterkamp, R.J., Smidt, M.P., Burbach, J.P.H. (eds) Development and Engineering of Dopamine Neurons. Advances in Experimental Medicine and Biology, vol 651. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0322-8_8

Download citation

Publish with us

Policies and ethics