Skip to main content
Log in

Neurons and Neuronal Stem Cells Survive in Glucose-Free Lactate and in High Glucose Cell Culture Medium During Normoxia and Anoxia

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Several questions concerning the survival of isolated neurons and neuronal stem and progenitor cells (NPCs) have not been answered in the past: (1) If lactate is discussed as a major physiological substrate of neurons, do neurons and NPCs survive in a glucose-free lactate environment? (2) If elevated levels of glucose are detrimental to neuronal survival during ischemia, do high concentrations of glucose (up to 40 mmol/L) damage neurons and NPCs? (3) Which is the detrimental factor in oxygen glucose deprivation (OGD), lack of oxygen, lack of glucose, or the combination of both? Therefore, in the present study, we exposed rat cortical neurons and NPCs to different concentrations of d-glucose ranging from 0 to 40 mmol/L, or 10 and 20 mmol/L l-lactate under normoxic and anoxic conditions, as well as in OGD. After 24 h, we measured cellular viability by biochemical assays and automated cytochemical morphometry, pH values, bicarbonate, lactate and glucose concentrations in the cell culture media, and caspases activities. We found that (1) neurons and NPCs survived in a glucose-free lactate environment at least up to 24 h, (2) high glucose concentrations >5 mmol/L had no effect on cell viability, and (3) cell viability was reduced in normoxic glucose deprivation to 50% compared to 10 mmol/L glucose, whereas cell viability in OGD did not differ from that in anoxia with lactate which reduced cell viability to 30%. Total caspases activities were increased in the anoxic glucose groups only. Our data indicate that (1) neurons and NPCs can survive with lactate as exclusive metabolic substrate, (2) the viability of isolated neurons and NPCs is not impaired by high glucose concentrations during normoxia or anoxia, and (3) in OGD, low glucose concentrations, but not low oxygen levels are detrimental for neurons and NPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANLSH:

Astrocyte-neuron lactate shuttle hypothesis

GLUT:

Glucose transporter protein

MCT:

Monocarboxylate transporter protein

NPC:

Neuronal progenitor cell

OGD:

Oxygen glucose deprivation

References

  1. Magistretti PJ, Pellerin L (1999) Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 14:177–182

    CAS  PubMed  Google Scholar 

  2. Magistretti PJ, Pellerin L, Rothman DL et al (1999) Energy on demand. Science 283:496–497

    Article  CAS  PubMed  Google Scholar 

  3. Magistretti PJ, Sorg O, Naichen Y et al (1994) Regulation of astrocyte energy metabolism by neurotransmitters. Ren Physiol Biochem 17:168–171

    CAS  PubMed  Google Scholar 

  4. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  CAS  PubMed  Google Scholar 

  5. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  CAS  PubMed  Google Scholar 

  6. Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J. Cereb Blood Flow Metab 26:142–152

    Article  CAS  Google Scholar 

  7. Magistretti PJ, Pellerin L (1997) Metabolic coupling during activation. Cel view Adv Exp Med Biol 413:161–166

    CAS  Google Scholar 

  8. Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24:573–578

    Article  CAS  PubMed  Google Scholar 

  9. Chih CP, Roberts EL Jr (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23:1263–1281

    Article  CAS  PubMed  Google Scholar 

  10. Pellerin L (2008) Brain energetics (thought needs food). Curr Opin Clin Nutr Metab Care 11:701–705

    Article  PubMed  Google Scholar 

  11. Bonvento G, Herard AS, Voutsinos-Porche B (2005) The astrocyte–neuron lactate shuttle: a debated but still valuable hypothesis for brain imaging. J Cereb Blood Flow Metab 25:1394–1399

    Article  CAS  PubMed  Google Scholar 

  12. Dienel GA, Cruz NF (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 45:321–351

    Article  CAS  PubMed  Google Scholar 

  13. Schurr A, West CA, Rigor BM (1989) Electrophysiology of energy metabolism and neuronal function in the hippocampal slice preparation. J Neurosci Methods 28:7–13

    Article  CAS  PubMed  Google Scholar 

  14. Schurr A, West CA, Reid KH et al (1987) Increased glucose improves recovery of neuronal function after cerebral hypoxia in vitro. Brain Res 421:135–139

    Article  CAS  PubMed  Google Scholar 

  15. Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328

    Article  CAS  PubMed  Google Scholar 

  16. Schurr A, Payne RS, Miller JJ et al (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426

    Article  CAS  PubMed  Google Scholar 

  17. Schurr A, Payne RS, Miller JJ et al (1997) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744:105–111

    Article  CAS  PubMed  Google Scholar 

  18. Schurr A, Payne RS, Miller JJ et al (1997) Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia. Brain Res 774:221–224

    Article  CAS  PubMed  Google Scholar 

  19. Schurr A (2002) Energy metabolism, stress hormones and neural recovery from cerebral ischemia/hypoxia. Neurochem Int 41:1–8

    Article  CAS  PubMed  Google Scholar 

  20. Schurr A, Payne RS, Miller JJ et al (2001) Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone release is detrimental. J Neurosci Res 66:782–789

    Article  CAS  PubMed  Google Scholar 

  21. Payne RS, Tseng MT, Schurr A (2003) The glucose paradox of cerebral ischemia: evidence for corticosterone involvement. Brain Res 971:9–17

    Article  CAS  PubMed  Google Scholar 

  22. Brewer GJ, Torricelli JR, Evege EK et al (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  CAS  PubMed  Google Scholar 

  23. Maurer MH, Brömme JO, Feldmann RE Jr et al (2007) Glycogen Synthase Kinase 3beta (GSK3beta) Regulates Differentiation and Proliferation in Neural Stem Cells from the Rat Subventricular Zone. J Proteome Res 6:1198–1208

    Article  CAS  PubMed  Google Scholar 

  24. Maurer MH, Feldmann RE, Jr, Fütterer CD et al (2003) The proteome of neural stem cells from adult rat hippocampus. Proteome Sci 1:4

    Article  PubMed  Google Scholar 

  25. Hofmann J, Sernetz M (1983) A kinetic study on the enzymatic hydrolysis of fluorescein diacetate and fluorescein-di-beta-D-galactopyranoside. Anal Biochem 131:180–186

    Article  CAS  PubMed  Google Scholar 

  26. Klimant I, Kuehl M, Glud RN et al (1997) Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sensors Actuators B 38–39:29–37

    Article  Google Scholar 

  27. Bürgers HF, Schelshorn DW, Wagner W et al (2008) Acute anoxia stimulates proliferation in adult neural stem cells from the rat brain. Exp Brain Res 188:33–43

    Article  PubMed  Google Scholar 

  28. Buttke TM, McCubrey JA, Owen TC (1993) Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 157:233–240

    Article  CAS  PubMed  Google Scholar 

  29. Dringen R, Wiesinger H, Hamprecht B (1993) Uptake of L-lactate by cultured rat brain neurons. Neurosci Lett 163:5–7

    Article  CAS  PubMed  Google Scholar 

  30. Brunet JF, Grollimund L, Chatton JY et al (2004) Early acquisition of typical metabolic features upon differentiation of mouse neural stem cells into astrocytes. Glia 46:8–17

    Article  CAS  PubMed  Google Scholar 

  31. Meredith D, Christian HC (2008) The SLC16 monocaboxylate transporter family. Xenobiotica 38:1072–1106

    Article  CAS  PubMed  Google Scholar 

  32. Merezhinskaya N, Fishbein WN (2009) Monocarboxylate transporters: past, present, and future. Histol Histopathol 24:243–264

    PubMed  Google Scholar 

  33. Maurer MH, Canis M, Kuschinsky W et al (2004) Correlation between local monocarboxylate transporter 1 (MCT1) and glucose transporter 1 (GLUT1) densities in the adult rat brain. Neurosci Lett 355:105–108

    Article  CAS  PubMed  Google Scholar 

  34. Yamada A, Yamamoto K, Imamoto N et al (2009) Lactate is an alternative energy fuel to glucose in neurons under anesthesia. Neuroreport 20:1538–1542

    Article  CAS  PubMed  Google Scholar 

  35. Cronberg T, Rytter A, Asztely F et al (2004) Glucose but not lactate in combination with acidosis aggravates ischemic neuronal death in vitro. Stroke 35:753–757

    Article  CAS  PubMed  Google Scholar 

  36. Izumi Y, Benz AM, Zorumski CF et al (1994) Effects of lactate and pyruvate on glucose deprivation in rat hippocampal slices. Neuroreport 5:617–620

    Article  CAS  PubMed  Google Scholar 

  37. Maus M, Marin P, Israel M et al (1999) Pyruvate and lactate protect striatal neurons against N-methyl-D-aspartate-induced neurotoxicity. Eur J Neurosci 11:3215–3224

    Article  CAS  PubMed  Google Scholar 

  38. Cater HL, Chandratheva A, Benham CD et al (2003) Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem 87:1381–1390

    Article  CAS  PubMed  Google Scholar 

  39. Blake DA, McLean NV (1989) A colorimetric assay for the measurement of D-glucose consumption by cultured cells. Anal Biochem 177:156–160

    Article  CAS  PubMed  Google Scholar 

  40. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Ministry of Research and Development (BMBF) within the National Genome Research Network NGFN-2 (to MHM, WK).

Conflict of interest statement

HFB became employee of TissueGnostics, the manufacturer of the image analysis software, after the experiments of this study had been completed. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin H. Maurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohnsland, S., Bürgers, H.F., Kuschinsky, W. et al. Neurons and Neuronal Stem Cells Survive in Glucose-Free Lactate and in High Glucose Cell Culture Medium During Normoxia and Anoxia. Neurochem Res 35, 1635–1642 (2010). https://doi.org/10.1007/s11064-010-0224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0224-1

Keywords

Navigation