Skip to main content

Advertisement

Log in

Effects of Bone Marrow Stromal Cell-conditioned Medium on Primary Cultures of Peripheral Nerve Tissues and Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Implantation of bone marrow stromal cells (MSCs) produces an improved functional outcome of peripheral nerve repair. In this study, rat dorsal root ganglion (DRG) explants, rat DRG neurons, and rat Schwann cells (SCs) were treated with monkey MSC-conditioned medium, respectively, and then subjected to MTT assay, Bromodeoxyuridine/Hoechst 33342 double staining, flow cytometry, immunohistochemistry, real-time quantitative PCR, and Western blot analysis, respectively. The results showed that MSC-conditioned medium enhanced axon growth and neurogenesis in cultured DRG explants, augmented cell survival of and expression of NF and GAP-43 by cultured DRG neurons, promoted cell survival and proliferation of cultured SCs, and increased the expression of NGF, BDNF, and bFGF in cultured SCs. We also found that mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 1/2 pathway was involved in the enhanced cell proliferation of SCs evoked by MSC-conditioned medium. The data of this study might help the understanding of MSCs-based treatment for peripheral nerve repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Navarro E, Verdú FJ, Rodríguez FJ, Ceballos D (2001) Artificial nerve graft for the repair of peripheral nerve injuries. Neurol Sci 22:S7–S13. doi:10.1007/s100720170003

    Article  Google Scholar 

  2. Evans GR (2000) Challenges to nerve regeneration. Semin Surg Oncol 19:312–318. doi:10.1002/1098-2388(200010/11)19:3<312::AID-SSU13>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  3. Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15(2):109–116. doi:10.1038/sj.gt.3303067

    Article  PubMed  CAS  Google Scholar 

  4. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192. doi:10.1634/stemcells.19-3-180

    Article  PubMed  CAS  Google Scholar 

  5. Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181. doi:10.1177/10454411990100020401

    Article  PubMed  CAS  Google Scholar 

  6. Wang D, Liu XL, Zhu JK, Jiang L, Hu J, Zhang Y, Yang LM, Wang HG, Yi JH (2008) Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res 1188:44–53. doi:10.1016/j.brainres.2007.09.098

    Article  PubMed  CAS  Google Scholar 

  7. Lu L, Chen X, Zhang CW, Yang WL, Wu YJ, Sun L, Bai LM, Gu XS, Ahmed S, Dawe GS, Xiao ZC (2008) Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of f3/notch signaling in mouse retina. Stem Cells 26:580–590. doi:10.1634/stemcells.2007-0106

    Article  PubMed  CAS  Google Scholar 

  8. Hu J, Zhu QT, Liu XL, Xu YB, Zhu JK (2007) Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol 204(2):658–666. doi:10.1016/j.expneurol.2006.11.018

    Article  PubMed  Google Scholar 

  9. Chen X, Wang XD, Chen G, Lin WW, Yao J, Gu XS (2006) Study of in vivo. Differentiation of rat bone marrow stromal cells into Schwann cell-like cells. Microsurgery 26:111–115. doi:10.1002/micr.20184

    Article  PubMed  CAS  Google Scholar 

  10. Dezawa M, Hoshino M, Nabeshima Y, Ide C (2005) Marrow stromal cells: implications in health and disease in the nervous system. Curr Mol Med 5(7):723–732. doi:10.2174/156652405774641070

    Article  PubMed  CAS  Google Scholar 

  11. Chen Y, Teng FY, Tang BL (2006) Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci 63:1649–1657. doi:10.1007/s00018-006-6019-5

    Article  PubMed  CAS  Google Scholar 

  12. Munoz-Elias G, Woodbury D, Black IB (2003) Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 21:437–448. doi:10.1634/stemcells.21-4-437

    Article  PubMed  Google Scholar 

  13. Suzuki H, Taguchi T, Tanaka H, Kataoka H, Li Z, Muramatsu K, Gondo T, Kawai S (2004) Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem Biophys Res Commun 322(3):918–922. doi:10.1016/j.bbrc.2004.07.201

    Article  PubMed  CAS  Google Scholar 

  14. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23(3):392–402. doi:10.1634/stemcells.2004-0149

    Article  PubMed  CAS  Google Scholar 

  15. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370. doi:10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  16. Coyne TM, Marcus AJ, Woodbury D, Black IB (2006) Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24(11):2483–2492. doi:10.1634/stemcells.2006-0174

    Article  PubMed  Google Scholar 

  17. Lu J, Moochhala S, Moore XL, Ng KC, Tan MH, Lee LK, He B, Wong MC, Ling EA (2006) Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neurosci Lett 398(1–2):12–17. doi:10.1016/j.neulet.2005.12.053

    Article  PubMed  CAS  Google Scholar 

  18. Kocsis JD, Akiyama Y, Lankford KL, Radtke C (2002) Cell transplantation of peripheral-myelin-forming cells to repair the injured spinal cord. J Rehabil Res Dev 39(2):287–298

    PubMed  Google Scholar 

  19. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96(19):10711–10716. doi:10.1073/pnas.96.19.10711

    Article  PubMed  CAS  Google Scholar 

  20. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100(4):2088–2093. doi:10.1073/pnas.0337659100

    Article  PubMed  CAS  Google Scholar 

  21. Weimann JM, Johansson CB, Trejo A, Blau HM (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5(11):959–966. doi:10.1038/ncb1053

    Article  PubMed  CAS  Google Scholar 

  22. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084. doi:10.1002/jcb.20886

    Article  PubMed  CAS  Google Scholar 

  23. Liu CH, Hwang SM (2005) Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 32(6):270–279. doi:10.1016/j.cyto.2005.11.003

    Article  PubMed  CAS  Google Scholar 

  24. Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer I (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035(1):73–85. doi:10.1016/j.brainres.2004.11.055

    Article  PubMed  CAS  Google Scholar 

  25. Zhong C, Qin Z, Zhong CJ, Wang Y, Shen XY (2003) Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci Lett 342(1–2):93–96. doi:10.1016/S0304-3940(03)00255-6

    Article  PubMed  CAS  Google Scholar 

  26. Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1(2):92–100. doi:10.1016/S1474-4422(02)00040-6

    Article  PubMed  Google Scholar 

  27. Isele NB, Lee HS, Landshamer S, Straube A, Padovan CS, Plesnila N, Culmsee C (2007) Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int 50(1):243–250. doi:10.1016/j.neuint.2006.08.007

    Article  PubMed  CAS  Google Scholar 

  28. Yu K, Ge J, Summers JB, Li F, Liu X, Ma P, Kaminski J, Zhuang J (2008) TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival. PLoS ONE 3(6):e2470. doi:10.1371/journal.pone.0002470

    Article  PubMed  Google Scholar 

  29. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92(6):692–699. doi:10.1161/01.RES.0000063425.51108.8D

    Article  PubMed  CAS  Google Scholar 

  30. Yang Y, Chen X, Ding F, Zhang P, Liu J, Gu X (2007) Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 28(9):1643–1652. doi:10.1016/j.biomaterials.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  31. Yu WM, Feltri ML, Wrabetz L, Strickland S, Chen ZL (2005) Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci 25(18):4463–4472. doi:10.1523/JNEUROSCI.5032-04.2005

    Article  PubMed  CAS  Google Scholar 

  32. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285(2):194–204. doi:10.1006/abio.2000.4753

    Article  PubMed  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  34. Mareddy S, Crawford R, Brooke G, Xiao Y (2007) Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng 13(4):819–829. doi:10.1089/ten.2006.0180

    Article  PubMed  CAS  Google Scholar 

  35. Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA (2005) Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev 14(4):440–451. doi:10.1089/scd.2005.14.440

    Article  PubMed  CAS  Google Scholar 

  36. Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang PH, Mao N (2003) Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21(5):527–535. doi:10.1634/stemcells.21-5-527

    Article  PubMed  CAS  Google Scholar 

  37. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P, McGonagle D (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46(12):3349–3360. doi:10.1002/art.10696

    Article  PubMed  Google Scholar 

  38. Colter DC, Class R, DiGirolamo CM, Prockop DJ (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97(7):3213–3218. doi:10.1073/pnas.070034097

    Article  PubMed  CAS  Google Scholar 

  39. Mahay D, Terenghi G, Shawcross SG (2008) Schwann cell mediated trophic effects by differentiated mesenchymal stem cells. Exp Cell Res 314(14):2692–2701. doi:10.1016/j.yexcr.2008.05.013

    Article  PubMed  CAS  Google Scholar 

  40. Caddick J, Kingham PJ, Gardiner NJ, Wiberg M, Terenghi G (2006) Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia 54(8):840–849. doi:10.1002/glia.20421

    Article  PubMed  Google Scholar 

  41. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2005) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64. doi:10.1016/j.expneurol.2005.10.029

    Article  PubMed  Google Scholar 

  42. Sze SK, de Kleijn DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim SK (2007) Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics 6(10):1680–1689. doi:10.1074/mcp.M600393-MCP200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports of Hi-Tech Research and Development Program of China (863 Program, Grant no. 2006AA02A128), Nature Science Foundation of China (Grant no. 30870881), Jiangsu Province Natural Science Foundation of China (Grant no. BK 2008010) and Natural Science Foundation of Jiangsu Education Department are gratefully acknowledged. We thank professor Jie Liu for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosong Gu or Fei Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wu, H., Hu, N. et al. Effects of Bone Marrow Stromal Cell-conditioned Medium on Primary Cultures of Peripheral Nerve Tissues and Cells. Neurochem Res 34, 1685–1694 (2009). https://doi.org/10.1007/s11064-009-9963-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9963-2

Keywords

Navigation