Skip to main content
Log in

Interactions Between Chronic Stress and Chronic Consumption of Caffeine on the Enzymatic Antioxidant System

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2009

Abstract

We studied the effect of chronic caffeine on parameters related to oxidative stress in different brain regions of stressed and non-stressed rats. Wistar rats were divided into three groups: control (receiving water), caffeine 0.3 g/L and caffeine 1.0 g/L (in the drinking water). These groups were subdivided into non-stressed and stressed (repeated restraint stress during 40 days). Lipid peroxide levels and the total radical-trapping potential were assessed, as well as antioxidant enzyme activities superoxide dismutase, gluthatione peroxidase, and catalase in hippocampus, striatum and cerebral cortex. Results showed interactions between stress and caffeine, especially in the cerebral cortex, since caffeine increased the activity of some antioxidant enzymes, but not in stressed animals. We concluded that chronic administration of caffeine led, in some cases, to increased activity of antioxidant enzymes. However, these effects were not observed in the stressed animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashton CH (1987) Caffeine and health. Br Med J (Clin Res Ed) 295:1293–1294

    Article  CAS  Google Scholar 

  2. Kalda A, Yu L, Oztas E et al (2006) Novel neuroprotection by caffeine and adenosine A (2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 248:9–15. doi:10.1016/j.jns.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  3. Xu K, Xu Y, Brown-Jermyn D et al (2006) Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 26:535–541. doi:10.1523/JNEUROSCI.3008-05.2006

    Article  CAS  PubMed  Google Scholar 

  4. Ross GW, Abbott RD, Petrovitch H et al (2000) Relationship between caffeine intake and Parkinson’s disease. JAMA 284:1378–1379. doi:10.1001/jama.284.11.1378

    Article  PubMed  Google Scholar 

  5. Maia L, de Mendonça A (2002) Does caffeine intake protect from Alzheimer’s disease. Eur J Neurol 9:377–382. doi:10.1046/j.1468-1331.2002.00421.x

    Article  CAS  PubMed  Google Scholar 

  6. Rothwell K (1974) Dose-related inhibition of chemical carcinogenesis in mouse skin by caffeine. Nature 252:69–70. doi:10.1038/252069a0

    Article  CAS  PubMed  Google Scholar 

  7. Fredholm BB, Battig K, Holmén J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  8. Gómez-Ruiz JA, Leake DS, Ames JM (2007) In vitro antioxidant activity of coffee compounds and their metabolites. J Agric Food Chem 55:6962–6969. doi:10.1021/jf0710985

    Article  PubMed  CAS  Google Scholar 

  9. Lee C (2000) Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clin Chim Acta 295:141–154. doi:10.1016/S0009-8981(00)00201-1

    Article  CAS  PubMed  Google Scholar 

  10. Shi X, Dalal NS, Jain AC (1991) Antioxidant behavior of caffeine: efficient scavenging of hydroxyl radicals. Food Chem Toxicol 29:1–6. doi:10.1016/0278-6915(91)90056-D

    Article  CAS  PubMed  Google Scholar 

  11. Mukhopadhyay S, Mondal A, Poddar MK (2003) Chronic administration of caffeine: effect on the activities of hepatic antioxidant enzymes of Ehrlich ascites tumor-bearing mice. Indian J Exp Biol 41:283–289

    CAS  PubMed  Google Scholar 

  12. Rossowska MJ, Nakamoto T (1994) Effects of chronic caffeine feeding on the activities of oxygen free radical defense enzymes in the growing rat heart and liver. Experientia 50:465–468. doi:10.1007/BF01920748

    Article  CAS  PubMed  Google Scholar 

  13. Cochrane CG (1991) Mechanisms of oxidant injury of cells. Mol Aspects Med 12:137–147. doi:10.1016/0098-2997(91)90009-B

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4a edn. Oxford University Press, Oxford

    Google Scholar 

  15. Olanow CW (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32(Suppl):S2–S9. doi:10.1002/ana.410320703

    Article  CAS  PubMed  Google Scholar 

  16. Bolaños JP, Almeida A, Stewart V et al (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

    Article  PubMed  Google Scholar 

  17. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871. doi:10.1016/S0022-3999(02)00429-4

    Article  PubMed  Google Scholar 

  18. Derin N, Aydin S, Yargicoglu P et al (2006) Changes in visual evoked potentials, lipid peroxidation and antioxidant enzymes in rats exposed to restraint stress: effects of l-carnitine. Int J Neurosci 116:205–221. doi:10.1080/00207450690969805

    Article  CAS  PubMed  Google Scholar 

  19. Das D, Banerjee RK (1993) Effects of stress on the antioxidant enzymes and gastric ulceration. Mol Cell Biochem 125:115–125. doi:10.1007/BF00936440

    Article  CAS  PubMed  Google Scholar 

  20. Vasconcellos AP, Nieto FB, Crema LM et al (2006) Chronic lithium treatment has antioxidant properties but does not prevent oxidative damage induced by chronic variate stress. Neurochem Res 31:1141–1151. doi:10.1007/s11064-006-9139-2

    Article  CAS  PubMed  Google Scholar 

  21. Fontella FU, Siqueira IR, Vasconcellos AP et al (2005) Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res 30:105–111. doi:10.1007/s11064-004-9691-6

    Article  CAS  PubMed  Google Scholar 

  22. McIntosh LJ, Cortopassi KM, Sapolsky RM (1998) Glucocorticoids may alter antioxidant enzyme capacity in the brain: kainic acid studies. Brain Res 791:215–222. doi:10.1016/S0006-8993(98)00104-8

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Wang X, Shigenaga MK et al (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10:1532–1538

    CAS  PubMed  Google Scholar 

  24. Gasior M, Jaszyna M, Peters J et al (2000) Changes in the ambulatory activity and discriminative stimulus effects of psychostimulant drugs in rats chronically exposed to caffeine: effect of caffeine dose. J Pharmacol Exp Ther 295:1101–1111

    CAS  PubMed  Google Scholar 

  25. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. doi:10.1016/0076-6879(90)86134-H

    Article  CAS  PubMed  Google Scholar 

  26. Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

    Article  CAS  PubMed  Google Scholar 

  27. Delmas-Beauvieux MC, Peuchant E, Dumon MF et al (1995) Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria. Clin Biochem 28:163–169. doi:10.1016/0009-9120(94)00071-3

    Article  CAS  PubMed  Google Scholar 

  28. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  29. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333. doi:10.1016/S0076-6879(81)77046-0

    Article  CAS  PubMed  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  31. Manoli LP, Gamaro GD, Silveira PP et al (2000) Effect of chronic variate stress on thiobarbituric-acid reactive species and on total radical-trapping potential in distinct regions of rat brain. Neurochem Res 25:915–921. doi:10.1023/A:1007592022575

    Article  CAS  PubMed  Google Scholar 

  32. Lores Arnaiz S, Travacio M, Llesuy S et al (1998) Regional vulnerability to oxidative stress in a model of experimental epilepsy. Neurochem Res 23:1477–1483

    Article  CAS  PubMed  Google Scholar 

  33. Oishi K, Yokoi M, Maekawa S et al (1999) Oxidative stress and haematological changes in immobilized rats. Acta Physiol Scand 165:65–69. doi:10.1046/j.1365-201x.1999.00482.x

    Article  CAS  PubMed  Google Scholar 

  34. Azam S, Hadi N, Khan NU et al (2003) Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med Sci Monit 9:325–330

    Google Scholar 

  35. Alptekin N, Seçkin S, Doğru-Abbasoğlu S et al (1996) Lipid peroxides, glutathione, gamma-glutamylcysteine synthetase and gamma-glutamyltranspeptidase activities in several tissues of rats following water-immersion stress. Pharmacol Res 34:167–169. doi:10.1006/phrs.1996.0084

    Article  CAS  PubMed  Google Scholar 

  36. Akpinar D, Yargiçoglu P, Derin N et al (2007) The effect of lipoic acid on antioxidant status and lipid peroxidation in rats exposed to chronic restraint stress. Physiol Res 57:893–901

    Google Scholar 

  37. Derin N, Yargiçoğlu P, Aslan M et al (2006) The effect of sulfite and chronic restraint stress on brain lipid peroxidation and anti-oxidant enzyme activities. Toxicol Ind Health 22:233–240. doi:10.1191/0748233706th264oa

    Article  CAS  PubMed  Google Scholar 

  38. Torres IL, Gamaro GD, Silveira-Cucco SN et al (2001) Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices. Braz J Med Biol Res 34:111–116

    CAS  PubMed  Google Scholar 

  39. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716. doi:10.2165/00002512-200118090-00004

    Article  CAS  PubMed  Google Scholar 

  40. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond 147:332–351

    Article  CAS  Google Scholar 

  41. de Oliveira MR, Silvestrin RB, Mello E, Souza T, Moreira JC (2007) Oxidative stress in the hippocampus, anxiety-like behavior and decreased locomotory and exploratory activity of adult rats: effects of sub acute vitamin A supplementation at therapeutic doses. Neurotoxicology 28:1191–1199. doi:10.1016/j.neuro.2007.07.008

    Article  PubMed  CAS  Google Scholar 

  42. Warner BB, Stuart L, Gebb S et al (1996) Redox regulation of manganese superoxide dismutase. Am J Physiol 271:L150–L158

    CAS  PubMed  Google Scholar 

  43. Yoo HY, Chang MS, Rho HM (1999) The activation of the rat copper/zinc superoxide dismutase gene by hydrogen peroxide through the hydrogen peroxide-responsive element and by paraquat and heat shock through the same heat shock element. J Biol Chem 274:23887–23892

    Article  CAS  PubMed  Google Scholar 

  44. Kim ST, Choi JH, Chang JW et al (2005) Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system. J Neurochem 95:89–98. doi:10.1111/j.1471-4159.2005.03342.x

    Article  CAS  PubMed  Google Scholar 

  45. Bhattacharya A, Ghosal S, Bhattacharya SK (2001) Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 74:1–6. doi:10.1016/S0378-8741(00)00309-3

    Article  CAS  PubMed  Google Scholar 

  46. Madrigal JL, Olivenza R, Moro MA et al (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429. doi:10.1016/S0893-133X(00)00208-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support: National Research Council of Brazil (CNPq), FAPERGS-PRONEX and FINEP/Rede IBN 01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristie Grazziotin Noschang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-009-0107-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noschang, C.G., Krolow, R., Pettenuzzo, L.F. et al. Interactions Between Chronic Stress and Chronic Consumption of Caffeine on the Enzymatic Antioxidant System. Neurochem Res 34, 1568–1574 (2009). https://doi.org/10.1007/s11064-009-9945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9945-4

Keywords

Navigation