Skip to main content
Log in

Effects of N-Acetylcysteine/Deferoxamine, Taurine and RC-3095 on Respiratory Chain Complexes and Creatine Kinase Activities in Rat Brain After Sepsis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The pathogenesis of sepsis is characterized by an overwhelming systemic inflammatory response that can lead to multiple organ failure. Considering that we have recently demonstrated that mitochondrial respiratory chain and creatine kinase (CK) are altered in the brain of rats after cecal ligation and perforation (CLP) and that a combination of N-acetylcysteine/deferoxamine (NAC/DFX), taurine and RC-3095 were shown to be an effective treatment of sepsis, we investigated whether the alterations of these enzymes may be reversed by these drugs. The results demonstrated that CLP inhibited complexes I and II, and that all the treatments were able to reverse this inhibition in all brain areas studied in the present work. On the other hand, complexes III and IV were not affected by sepsis neither by any of the treatments. An increase in CK activity in brain of rats 12 h after CLP was also verified; the administration of NAC/DFX and taurine reversed the increase in CK activity in hippocampus, cerebral cortex, cerebellum and striatum. On the other hand, RC-3095 significantly decreased CK activity, when compared to sham group in all brain areas studied. This is a preliminary study which showed beneficial effects of the treatments we proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Messaris E, Memos N, Chatzigianni E et al (2004) Time-dependent mitochondrial-mediated programmed neuronal cell death prolongs survival in sepsis. Crit Care Med 32:1764–1770

    Article  PubMed  Google Scholar 

  2. Semmler A, Frisch C, Debeir T et al (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204:733–740

    Article  PubMed  Google Scholar 

  3. Faraco G, Fossati S, Bianchi ME et al (2007) High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem 103:590–603

    Article  CAS  PubMed  Google Scholar 

  4. Hunter RL, Dragicevic N, Seifert K et al (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386

    Article  CAS  PubMed  Google Scholar 

  5. Barichello T, Martins MR, Reinke A et al (2005) Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med 33:221–223

    Article  PubMed  Google Scholar 

  6. Barichello T, Fortunato JJ, Vitali AM et al (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34:886–889

    Article  PubMed  Google Scholar 

  7. Heyland DK, Hopman W, Coo H et al (2000) Long-term health-related quality of life in survivors of sepsis. Short Form 36: a valid and reliable measure of health-related quality of life. Crit Care Med 28:3599–3605

    Article  CAS  PubMed  Google Scholar 

  8. Abd El-Gawad HM, Khalifa AE (2001) Quercetin, coenzyme Q10, and L-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43:257–263

    Article  CAS  PubMed  Google Scholar 

  9. Peristeris P, Clark BD, Gatti S et al (1992) N-acetylcysteine and glutathione as inhibitors of tumor necrosis factor production. Cell Immunol 140:390–399

    Article  CAS  PubMed  Google Scholar 

  10. Salvemini D, Cuzzocrea S (2003) Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine. Crit Care Med 31:S29–S38 [Suppl]

    Article  CAS  PubMed  Google Scholar 

  11. Sprong RC, Winkelhuyzen-Janssen AML, Aarsman CJM et al (1998) Low-dose N-acetylcysteine protects rats against endotoxin-mediated oxidative stress, but high-dose increases mortality. Am J Respir Crit Care Med 157:1283–1293

    CAS  PubMed  Google Scholar 

  12. Villa P, Ghezzi P (1995) Effect of N-acetyl-l-cysteine on sepsis in mice. Eur J Pharmacol 292:341–344

    CAS  PubMed  Google Scholar 

  13. Vulcano M, Meiss RP, Isturiz MA (2000) Deferoxamine reduces tissue injury and lethality in LPS-treated mice. Int J Immunopharmacol 22:635–644

    Article  CAS  PubMed  Google Scholar 

  14. Kozlov AV, Szalay L, Umar F et al (2003) EPR analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species. Free Radic Biol Med 34:1555–1562

    Article  CAS  PubMed  Google Scholar 

  15. Erdamar H, Türközkan N, Ekremoğlu M et al (2007) The effect of taurine on polymorphonuclear leukocyte functions in endotoxemia. Amino Acids 33:581–585

    Article  CAS  PubMed  Google Scholar 

  16. Ritter C, Andrades ME, Reinke A et al (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349

    Article  CAS  PubMed  Google Scholar 

  17. Damiani CR, Benetton CA, Stoffel C et al (2007) Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol 22:1846–1851

    Article  CAS  PubMed  Google Scholar 

  18. Ritter C, Reinke A, Andrades M et al (2004) Protective effect of N-acetylcysteine and deferoxamine on carbon tetrachloride-induced acute hepatic failure in rats. Crit Care Med 32:2079–2084

    Article  CAS  PubMed  Google Scholar 

  19. Ritter C, Cunha AA, Echer IC et al (2006) Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Crit Care Med 34:471–477

    Article  CAS  PubMed  Google Scholar 

  20. Wu JY, Wu H, Jin Y et al (2009) Mechanism of neuroprotective function of taurine. Adv Exp Med Biol 643:169–179

    Article  PubMed  Google Scholar 

  21. Chen K, Zhang Q, Wang J et al (2009) Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res 1279:131–138

    Article  CAS  PubMed  Google Scholar 

  22. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150

    Article  CAS  PubMed  Google Scholar 

  23. Eichacker PQ, Parent C, Kalil A et al (2002) Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am J Respir Crit Care Med 166:1197–1205

    Article  PubMed  Google Scholar 

  24. Giacometti A, Cirioni O, Ghiselli R et al (2004) Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock. Am J Respir Crit Care Med 169:187–194

    Article  PubMed  Google Scholar 

  25. Meller CA, Henriques JAP, Schwartsmann G et al (2004) The bombesin/gastrin releasing peptide receptor antagonist RC-3095 blocks apomorphine but not MK-801-induced stereotypy in mice. Peptides 25:585–588

    Article  CAS  PubMed  Google Scholar 

  26. Roesler R, Henriques JA, Schwartsmann G (2004) Neuropeptides and anxiety disorders: bombesin receptors as novel therapeutic targets. Trends Pharmacol Sci 25:241–242

    Article  CAS  PubMed  Google Scholar 

  27. Yamada K, Santo-Yamada Y, Wada E et al (2002) Role of bombesin [BN]-like peptides/receptors in emotional behavior by comparison of three strains of BN-like peptide receptor knockout mice. Mol Psychiatry 7:113–117

    Article  CAS  PubMed  Google Scholar 

  28. Schwartsmann G (2004) Dexamethasone and gastrin-releasing peptide receptors in human lung cells. Lung Cancer 46:129

    Article  CAS  PubMed  Google Scholar 

  29. Genton L, Kudsk KA (2003) Interactions between the enteric nervous system and the immune system: role of neuropeptides and nutrition. Am J Surg 186:253–258

    Article  CAS  PubMed  Google Scholar 

  30. Medina S, Rio MD, De la Cuadra B et al (1999) Age-related changes in the modulatory action of gastrin-releasing peptide, neuropeptide Y and sulfated cholecystokinin octapeptide in the proliferation of murine lymphocytes. Neuropeptides 33:173–179

    Article  CAS  PubMed  Google Scholar 

  31. Grimsholm O, Rantapaa-Dahlqvist S, Forsgren S (2005) Levels of gastrin releasing peptide and substance P in synovial fluid and serum correlate with levels of cytokines in rheumatoid arthritis. Arthritis Res Ther 7:R416–R426

    Article  PubMed  Google Scholar 

  32. Subramaniam M, Sugiyama K, Coy DH et al (2003) Bombesin-like peptides and mast cell responses: relevance to bronchopulmonary dysplasia? Am. J Respir Crit Care Med 168:601–611

    Article  Google Scholar 

  33. Dal-Pizzol F, Di Leone LP, Ritter C et al (2006) Gastrin-releasing peptide receptor antagonist effects on an animal model of sepsis. Am J Respir Crit Care Med 173:84–90

    Article  CAS  PubMed  Google Scholar 

  34. Streck EL, Matté C, Vieira PS et al (2003) Impairment of energy metabolism in hippocampus of rats subjected to chemically-induced hyperhomocysteinemia. Biochim Biophys Acta 1637:187–192

    CAS  PubMed  Google Scholar 

  35. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  Google Scholar 

  36. Fink MP (2002) Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin 18:165–175

    Article  CAS  PubMed  Google Scholar 

  37. Crouser ED, Julian MW, Dorinsky PM (1999) Ileal VO[2]-O[2] alterations induced by endotoxin correlate with severity of mitochondrial injury. Am J Respir Crit Care Med 160:1347–1353

    CAS  PubMed  Google Scholar 

  38. Comim CM, Rezin GT, Scaini G et al (2008) Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion 8:313–318

    Article  CAS  PubMed  Google Scholar 

  39. Hollenberg SM, Dumasius A, Easington C et al (2001) Characterization of a hyperdynamic murine model of resuscitated sepsis using echocardiography. Am J Respir Crit Care Med 164:891–895

    CAS  PubMed  Google Scholar 

  40. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  41. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  42. Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    Article  CAS  PubMed  Google Scholar 

  43. Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  44. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  45. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741

    Article  CAS  PubMed  Google Scholar 

  46. Almeda FQ, Calvin JE, Parrillo JE (2001) Prevalence of angiographically significant stenosis in patients with chest pain and an elevated troponin I level and normal creatine kinase and creatine kinase-MB levels. Am J Cardiol 87:1286–1289

    Article  CAS  PubMed  Google Scholar 

  47. Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 63:289–325

    Article  CAS  PubMed  Google Scholar 

  48. Schurr A, Rigor BM (1987) The mechanism of neuronal resistance and adaptation to hypoxia. FEBS Lett 224:4–8

    Article  CAS  PubMed  Google Scholar 

  49. Wang GH, Jiang ZL, Fan XJ et al (2007) Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology 52:1199–1209

    Article  CAS  PubMed  Google Scholar 

  50. Richards DA, Lemos T, Whitton PS et al (1995) Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. J Neurochem 65:1674–1680

    Article  CAS  PubMed  Google Scholar 

  51. El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    CAS  PubMed  Google Scholar 

  52. Flood JF, Morley JE (1988) Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Res 460:314–322

    Article  CAS  PubMed  Google Scholar 

  53. Rashidy-Pour A, Razvani ME (1998) Unilateral reversible inactivations of the nucleus tractus solitarius and amygdala attenuate the effects of bombesin on memory storage. Brain Res 814:127–132

    Article  CAS  PubMed  Google Scholar 

  54. Aksenov M, Aksenova M, Butterfield DA et al (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  CAS  PubMed  Google Scholar 

  55. David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54:276–287

    Article  CAS  PubMed  Google Scholar 

  56. Dantas AS, Luft T, Henriques JAP et al (2006) Opposite effect of low and high doses of the gastrin-releasing peptide receptor antagonist RC-3095 on memory consolidation in hippocampus: possible involvement of the GABAergic system. Peptides 27:2307–2312

    Article  CAS  Google Scholar 

  57. Dal-Pizzol F, Ritter C, Cassol Jr OJ et al (2009) Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res. doi:10.1007/s11064-009-0043-4

  58. Streck EL, Comim CM, Barichello T et al (2008) The septic brain. Neurochem Res 33:2171–2177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) and Universidade do Extremo Sul Catarinense (UNESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassol, O.J., Rezin, G.T., Petronilho, F.C. et al. Effects of N-Acetylcysteine/Deferoxamine, Taurine and RC-3095 on Respiratory Chain Complexes and Creatine Kinase Activities in Rat Brain After Sepsis. Neurochem Res 35, 515–521 (2010). https://doi.org/10.1007/s11064-009-0089-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0089-3

Keywords

Navigation