Skip to main content

Advertisement

Log in

The Septic Brain

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sepsis is a major disease entity with important clinical implications. Sepsis-induced multiple organ failure is associated with a high mortality rate in humans and is clinically characterized by pulmonary, cardiovascular, renal and gastrointestinal dysfunction. Recently, several studies have demonstrated that sepsis survivors present long-term cognitive impairment, including alterations in memory, attention, concentration and/or global loss of cognitive function. However, the pathogenesis and natural history of septic encephalopathy and cognitive impairment are still poorly known and further understanding of these processes is necessary for the development of effective preventive and therapeutic interventions. This review discusses the clinical presentation and underlying pathophysiology of the encephalopathy and cognitive impairment associated with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5HT-1A:

Serotonin receptor type 1A

ACTH:

Adrenocorticotropic hormone

AMPc:

Adenosine monophosphate cyclic

BBB:

Blood–brain barrier

BDNF:

Brain derived-neurotrofic factor

CLP:

Cecal ligation and perforation

CNS:

Central nervous system

DFX:

Deferoxamine

CREB:

cAMP response element-binding

ICU:

Intensive care unit

GABAA :

Gama-aminobutyric acid receptor type A

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

NAC:

N-Acetylcysteine

NMDA:

N-Methyl-d-aspartic acid

NSE:

Neuron-specific enolase

PKA:

Protein kinase A

PKC:

Protein kinase C

mRNA:

Messenger ribonucleic acid

SE:

Septic encephalopathy

SIRS:

Systemic inflammatory response syndrome

VAChT:

Vesicle transporters of acetylcholine

References

  1. Vandijck D, Decruyenaere JM, Blot SI (2006) The value of sepsis definitions in daily ICU-practice. Acta Clin Belg 6:220–226

    Google Scholar 

  2. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–142

    PubMed  CAS  Google Scholar 

  3. Wheeler AP, Bernard GR (1999) Treating patients with severe sepsis. N Engl J Med 340:207–214

    PubMed  CAS  Google Scholar 

  4. Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112:235–243

    PubMed  CAS  Google Scholar 

  5. Sands KE, Bates DW, Lanken PN et al (1997) Academic Medical Center Consortium Sepsis Project Working Group: epidemiology of sepsis syndrome in 8 academic medical centers. JAMA 278:234–238

    PubMed  CAS  Google Scholar 

  6. Brun-Buisson C (2000) The epidemiology of the systemic inflammatory response. Intensive Care Med 26:S64–S74

    PubMed  Google Scholar 

  7. Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time? Crit Care Med 26:2078–2086

    PubMed  CAS  Google Scholar 

  8. Hotchkiss RS, Karl IK (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150

    PubMed  CAS  Google Scholar 

  9. Tran DD, Groeneveld AB, Van Der Meulen J et al (1990) Age, chronic disease, sepsis, organ system failure, and mortality in a medical intensive care unit. Crit Care Med 18:474–479

    PubMed  CAS  Google Scholar 

  10. O’Brien JM Jr, Ali NA, Abraham E (2005) Year in review in Critical Care, 2004: sepsis and multi-organ failure. Crit Care 9:409–413

    PubMed  Google Scholar 

  11. Young GB, Bolton CF, Austin TW et al (1990) The encephalopathy associated with septic illness. Clin Invest Med 13:297–304

    PubMed  CAS  Google Scholar 

  12. Sprung CL, Peduzzi PN, Shatney CH et al (1990) Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med 18:801–806

    PubMed  CAS  Google Scholar 

  13. Bleck TP, Smith MC, Pierre-Louis SJ et al (1993) Neurologic complications of critical medical illnesses. Crit Care Med 21:98–103

    Article  PubMed  CAS  Google Scholar 

  14. Papadopoulos MC, Davies DC, Moss RF et al (2000) Pathophysiology of septic encephalopathy: a review. Crit Care Med 28:3019–3024

    PubMed  CAS  Google Scholar 

  15. Sharshar T, Annane D, de la Grandmaison GL et al (2004) The neuropathology of septic shock. Brain Pathol 14:21–33

    PubMed  Google Scholar 

  16. Sharshar T, Gray F, de la Grandmaison GL et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    PubMed  CAS  Google Scholar 

  17. Spyer KM (1989) Neural mechanisms involved in cardiovascular control during affective behaviour. Trends Neurosci 12:506–513

    PubMed  CAS  Google Scholar 

  18. Saper CB, Breder CD (1994) The neurologic basis of fever. N Engl J Med 330:1880–1886

    PubMed  CAS  Google Scholar 

  19. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavorial homeostasis. JAMA 267:1244–1252

    PubMed  CAS  Google Scholar 

  20. Chrousos GP (1995) The hypothalamic-pituitary-adrenal-axis and immune-mediated inflammation. N Engl J Med 332:1351–1362

    PubMed  CAS  Google Scholar 

  21. Angus DC, Musthafa AA, Clermont G et al (2001) Quality-adjusted survival in the first year after the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1389–1394

    PubMed  CAS  Google Scholar 

  22. Gordon SM, Jackson JC, Ely EW et al (2004) Clinical identification of cognitive impairment in ICU survivors: insights for intensivists. Intensive Care Med 30:1997–2008

    PubMed  Google Scholar 

  23. Granja C, Dias C, Costa-Pereira A et al (2004) Quality of life of survivors from severe sepsis and septic shock may be similar to that of others who survive critical illness. Crit Care 8:91–98

    Google Scholar 

  24. Granja C, Lopes A, Moreira S et al (2005) JMIP Study Group: patients’ recollections of experiences in the intensive care unit may affect their quality of life. Crit Care 9:96–109

    Google Scholar 

  25. Heyland DK, Hopman W, Coo H et al (2000) Long-term health-related quality of life in survivors of sepsis. Short Form 36: a valid and reliable measure of health-related quality of life. Crit Care Med 28:3599–3605

    PubMed  CAS  Google Scholar 

  26. Hopkins RO, Weaver LK, Pope D et al (1999) Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160:50–56

    PubMed  CAS  Google Scholar 

  27. Hopkins RO, Weaver LK, Collingridge D et al (2005) Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 171:340–347

    PubMed  Google Scholar 

  28. Hough CL, Curtis JR (2005) Long-term sequelae of critical illness: memories and health-related quality of life. Crit Care 9:145–146

    PubMed  Google Scholar 

  29. Jackson JC, Gordon SM, Ely EW et al (2004) Research issues in the evaluation of cognitive impairment in intensive care unit survivors. Intensive Care Med 30:2009–2016

    PubMed  Google Scholar 

  30. Ritter C, Andrades ME, Reinke A et al (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349

    PubMed  CAS  Google Scholar 

  31. De Souza LF, Ritter C, Gelain DP et al (2007) Mitochondrial superoxide production is related to the control of cytokine release from peritoneal macrophage after antioxidant treatment in septic rats. J Surg Res 141:252–256

    PubMed  Google Scholar 

  32. Quevedo J, Vianna MRM, Roesler R et al (1999) Two time windows for anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus. Learn Mem 6:600–607

    PubMed  CAS  Google Scholar 

  33. Matthies H (1982) Plasticity in the nervous system: an approach to memory research. In: Ajmone-Marsan C, Matthies H (eds) Neuronal plasticity and memory formation. Raven Press, New York, pp 1–15

    Google Scholar 

  34. Matthies H (1989) In search of the cellular mechanisms of memory. Prog Neurobiol 32:277–349

    PubMed  CAS  Google Scholar 

  35. Rose SPR (1995) Cell-adhesion molecules, glucocorticoids and long-term memory formation. Trends Neurosci 18:502–506

    PubMed  CAS  Google Scholar 

  36. Frey U, Schollmeier K, Reymann KG et al (1995) Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience 67:799–807

    PubMed  CAS  Google Scholar 

  37. Rose SPR (1995) Time-dependent biochemical and cellular processes in memory processes in memory formation. In: McGaugh JL, Bermúdez-Rattoni F, Prado-Alcalá RA (eds) Plasticity in the central nervous system: learning and memory. Erlbaum, Mahwah, pp 67–82

    Google Scholar 

  38. Rossato JI, Bevilaqua LR, Myskiw JC et al (2007) On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 14:36–46

    PubMed  Google Scholar 

  39. Perrin G, Ferreira G, Meurisse M et al (2007) Social recognition memory requires protein synthesis after reactivation. Behav Neurosci 121:148–155

    PubMed  CAS  Google Scholar 

  40. Alkon DL, Epstein H, Kuzirian A et al (2005) Protein synthesis required for long-term memory is induced by PKC activation on days before associate learning. Proc Natl Acad Sci 102:16432–16437

    PubMed  CAS  Google Scholar 

  41. Quevedo J, Sant’Anna MK, Madruga M et al (2003) Differential effects of emotional arousal in short- and long-term memory in healthy adults. Neurobiol Learn Mem 79:132–135

    PubMed  Google Scholar 

  42. McGaugh JL, Izquierdo I (2000) The contribution of pharmacology to research on the mechanisms of memory formation. Trends Pharmacol Sci 21:208–210

    PubMed  CAS  Google Scholar 

  43. de Wied D (1964) Influence of anterior pituitary on avoidance learning and escape behavior. Am J Physiol 207:255–259

    Google Scholar 

  44. de Wied D (1993) From stress hormones to neuropeptides. In: Burbach JPH, De Wied D (eds) Brain functions of neuropeptides. Parthenon, Carnforth

    Google Scholar 

  45. Gold PE, van Buskirk R (1975) Facilitation of time-dependent memory processes whit posttrial epinephrine injections. Behav Biol 13:145–153

    PubMed  CAS  Google Scholar 

  46. Gold PE, van Buskirk R (1976) Enhancement and impairment of memory processes whit posttrial injections of adrenocorticotrophic hormones. Behav Biol 16:387–400

    PubMed  CAS  Google Scholar 

  47. McGaugh JL (1983) Hormonal influences on memory. Ann Rev Psychol 34:229–241

    Google Scholar 

  48. Bohus B (1994) Humoral modulation of learning and memory processes: physiological significance of brain and peripheral mechanisms. In: Delacour J (ed) The memory systems of the brain. World Scientific, Singapore

    Google Scholar 

  49. Rose SPR (2000) God’s organism? The chick as a model system for memory studies. Learn Mem 7:1–17

    PubMed  CAS  Google Scholar 

  50. Roozendaal B, McGaugh JL (1996) Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol Learn Mem 65:1–8

    PubMed  CAS  Google Scholar 

  51. McGaugh JL, Cahill L, Roozendaal B (1996) Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci 26:13508–13514

    Google Scholar 

  52. Ferry B, Roozendaal B, McGaugh JL (1999) Role of norepinephrine in mediating stress hormone regulation of long-term storage: a critical involvement of the amygdala. Biol Psychiatry 46:1140–1152

    PubMed  CAS  Google Scholar 

  53. Setlow B, Roozendaal B, McGaugh JL (2000) Involvement of a basolateral amygdala complex-nucleus accumbens pathway in glicocorticoid-induced modulation of memory consolidation. Eur J Neurosci 12:367–375

    PubMed  CAS  Google Scholar 

  54. Izquierdo I (1989) Different forms of posttaining memory processing. Behav Neural Biol 51:171–202

    PubMed  CAS  Google Scholar 

  55. Izquierdo I (1991) Opioids and memory. In: Stone TW (ed) Aspects of synaptic transmission. Taylor and Francis, London

    Google Scholar 

  56. Cahill L, McGaugh JL (1998) Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci 11:294–299

    Google Scholar 

  57. McGaugh JL (2000) Memory: a century of consolidation. Science 287:248–251

    PubMed  CAS  Google Scholar 

  58. Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316

    PubMed  CAS  Google Scholar 

  59. Izquierdo I, da-Cunha C, Rosat R et al (1992) Neurotransmitter receptors involved in memory processing by the amygdala, medial septum and hippocampus of rats. Behav Neural Biol 58:16–25

    PubMed  CAS  Google Scholar 

  60. Brioni JD (1993) Role of GABA during the multiple consolidation of memory. Drug Develop Res 28:3–27

    CAS  Google Scholar 

  61. Izquierdo I, Quillfeldt JA, Zanatta MS et al (1997) Sequential involvement of hippocampus and amygdala, entorhinal cortex and parietal cortex in the formation and expression of memory for inhibitory avoidance in rats. Eur J Neurosci 9:786–793

    PubMed  CAS  Google Scholar 

  62. Quevedo J, Moretto A, Colvero M et al (1997) The N-methyl-d-aspartate receptor blocker MK-801 prevents the facilitatory effects of naloxone and epinephrine on retention of inhibitory avoidance task in rats. Behav Pharmacol 8:471–474

    PubMed  CAS  Google Scholar 

  63. Quevedo J, Vianna M, Zanatta MS et al (1997) Involvement of mechanisms dependent on NMDA receptors, nitric oxide and protein kinase A in the hippocampus but not in the caudate nucleus in memory. Behav Pharmacol 8:713–717

    PubMed  CAS  Google Scholar 

  64. Roesler R, Kuyven CR, Kruel AV et al (1998) Involvement of hippocampal NMDA receptors in retention of shuttle avoidance conditioning in rats. Braz J Med Biol Res 3:1601–1604

    Google Scholar 

  65. Roesler R, Vianna M, Sant’Anna MK et al (1998) Intrahippocampal infusion of the NMDA receptor antagonist AP5 impairs retention of an inhibitory avoidance task: protection from impairment by pretraining or preexposure to the task apparatus. Neurobiol Learn Mem 69:87–91

    PubMed  CAS  Google Scholar 

  66. Roesler R, Vianna MR, de-Paris F et al (1999) Memory-enhancing treatments do not reverse the impairment of inhibitory avoidance retention induced by NMDA receptor blockade. Neurobiol Learn Mem 72:252–258

    PubMed  CAS  Google Scholar 

  67. Roesler R, Vianna MR, de-Paris F et al (2000) Infusions of AP5 into the basolateral amygdala impair the formation, but not the expression, of step-down inhibitory avoidance. Braz J Med Biol Res 33:829–834

    PubMed  CAS  Google Scholar 

  68. Roesler R, Vianna MR, de-Paris F et al (2000) NMDA receptor antagonism in the basolateral amygdala blocks enhancement of inhibitory avoidance learning in previously trained rats. Behav Brain Res 112:99–105

    PubMed  CAS  Google Scholar 

  69. Ardenghi P, Barros DM, Izquierdo LA et al (1997) Late and prolonged memory modulation in entorhinal and parietal cortex by drugs acting on the camp/protein kinase. A signaling pathway. Behav Pharmacol 8:745–751

    PubMed  CAS  Google Scholar 

  70. Bevilaqua L, Ardenghi P, Schroder N et al (1997) Drugs that influence the cyclic adenosine monophosphate/protein kinase. A signaling pathway alter memory consolidation when given late after training into rat hippocampus but not amygdala. Behav Pharmacol 8:331–338

    PubMed  CAS  Google Scholar 

  71. Walz R, Rockenbach IC, Amaral OB et al (1999) MAPK and memory. Trends Neurosci 22:495

    PubMed  CAS  Google Scholar 

  72. Walz R, Roesler R, Quevedo J et al (1999) Dose-dependent impairment of inhibitory avoidance retention in rats by immediate posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical structures. Behav Brain Res 10:219–233

    Google Scholar 

  73. Walz R, Roesler R, Barros DM et al (1999) Effects of post-training infusions of a mitogen-activated protein kinase kinase inhibitor into the hippocampus or entorhiunal cortex on short- and long-term retention of inhibitory avoidance. Behav Pharmacol 10:723–730

    PubMed  CAS  Google Scholar 

  74. Walz R, Roesler R, Quevedo J et al (2000) Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical and limbic structures. Neurobiol Learn Mem 73:11–20

    PubMed  CAS  Google Scholar 

  75. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 20:1380–1386

    Google Scholar 

  76. Jorrard LD (1995) What does the hippocampus really do? Behav Brain Res 71:1–10

    Google Scholar 

  77. Gordon SM, Jackson JC (2004) Clinical identification of cognitive impairment in ICU survivors: insights for intensivists. Intensive Care Med 30:1997–2008

    PubMed  Google Scholar 

  78. Semmler A, Okulla T, Sastre M et al (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30:144–157

    PubMed  CAS  Google Scholar 

  79. Rothenhausler HB, Ehrentraut S, Stoll C et al (2001) The relationship between cognitive performance and employment and health status in long-term survivors of the acute respiratory distress syndrome: results of an exploratory study. Gen Hosp Psychiatry 23:90–96

    PubMed  CAS  Google Scholar 

  80. Jes C, Griffiths RD, Slater TC et al (2006) Significant cognitive dysfunction in non-delirious patients identified during and persisting following critical illness. Intensive Care Med 32:923–926

    Google Scholar 

  81. Sukantarat KT, Burgess PW, Williamson RC et al (2005) Prolonged cognitive dysfunction in survivors of critical illness. Anaesthesia 60:847–853

    PubMed  CAS  Google Scholar 

  82. Hopkins RO, Weaver LK, Chan KJ et al (2004) Quality of life, emotional, and cognitive function following acute respiratory distress syndrome. J Int Neuropsychol Soc 10:1005–1017

    PubMed  Google Scholar 

  83. Barichello T, Martins MR, Reinke A et al (2005) Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med 33:221–223

    PubMed  Google Scholar 

  84. Barichello T, Martins MR, Reinke A et al (2005) Long-term cognitive impairment in sepsis survivors. Crit Care Med 33:1671

    PubMed  Google Scholar 

  85. Barichello T, Martins MR, Reinke A et al (2007) Behavioural deficits in CLP-induced sepsis survivor rats. Braz J Med Biol Res 40:831–837

    PubMed  CAS  Google Scholar 

  86. Scragg P, Jones A, Fauvel N (2001) Psychological problems following ICU treatment. Anaesthesia 56:9–14

    PubMed  CAS  Google Scholar 

  87. Skozol JW, Vender JS (2001) Vender anxiety, delirium, and pain in an intensive care unit. Crit Care Clin 17:821–842

    Google Scholar 

  88. Hart RP, Kwentus JA, Taylor JR et al (1997) Rate of forgetting in dementia and depression. J Consult Clin Psychol 55:101–105

    Google Scholar 

  89. Jones RD, Tranel D, Benton A et al (1992) Differentiating dementia from pseudo-dementia early in the clinical course: utility of neuropsychological tests. Neuropsychology 6:13–21

    Google Scholar 

  90. Nestler EJ, Barrot M, DiLeone RJ et al (2002) Neurobiology of depression. Neuron 28:13–25

    Google Scholar 

  91. Tuon L, Comim CM, Antunes MM et al (2007) Imipramine reverses the depressive symptoms in sepsis survivor rats. Intensive Care Med 33:2165–2167

    PubMed  CAS  Google Scholar 

  92. Barichello T, Fortunato JJ, Vitali AM et al (2006) Oxidative variables in the brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34:886–889

    PubMed  Google Scholar 

  93. Barichello T, Machado RA, Constantino L et al (2007) Antioxidant treatment reverses late cognitive impairment in an animal model of sepsis. Crit Care Med 35:2186–2190

    PubMed  CAS  Google Scholar 

  94. Semmler A, Frisch C, Debeir T et al (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204:733–740

    PubMed  Google Scholar 

  95. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    PubMed  Google Scholar 

  96. Mogensen J, Moustgaard A, Khan U et al (2005) Egocentric spatial orientation in a water maze by rats subjected to transaction of the fimbria-fornix and/or ablation of the prefrontal cortex. Brain Res Bull 65:41–58

    PubMed  Google Scholar 

  97. Dixon CE, Kochanek PM, Yan HQ et al (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16:109–122

    Article  PubMed  CAS  Google Scholar 

  98. Gilmor ML, Nash N, Roghani RA et al (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci 16:2179–2190

    PubMed  CAS  Google Scholar 

  99. Arvidsson U, Riedl M, Elde R et al (1997) Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 378:454–467

    PubMed  CAS  Google Scholar 

  100. Mesulam MM, Mufson EJ, Wainer BH et al (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    PubMed  CAS  Google Scholar 

  101. Gage FH, Bjorklund B, Stenevi U (1983) Reinnervation of the partially deafferented hippocampus by compensatory collateral sprouting from spared cholinergic and noradrenergic afferents. Brain Res 268:27–37

    PubMed  CAS  Google Scholar 

  102. Eckenstein FP, Baughman RW, Quinn J (1988) An anatomical study of cholinergic innervation in rat cerebral cortex. Neuroscience 25:457–474

    PubMed  CAS  Google Scholar 

  103. Dantzer R, O’Connor JC, Freund GG et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    PubMed  CAS  Google Scholar 

  104. De Bock F, Derijard B, Dornand J et al (1998) The neuronal death induced by endotoxic shock but not that induced by excitatory amino acids requires TNF-alpha. Eur J Neurosci 10:3107–3114

    PubMed  Google Scholar 

  105. Sharshar T, Annane D, De la Grandmaison GL et al (2004) The neuropathology of septic shock. Brain Pathol 14:21–33

    PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank UNESC (Brazil), FAPESC (Brazil) and CNPq (Brazil) that supported the studies of our group that are cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streck, E.L., Comim, C.M., Barichello, T. et al. The Septic Brain. Neurochem Res 33, 2171–2177 (2008). https://doi.org/10.1007/s11064-008-9671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9671-3

Keywords

Navigation