Skip to main content

Advertisement

Log in

Cyclosporine A Reduces Dendritic Outgrowth of Neuroblasts in the Subgranular Zone of the Dentate Gyrus in C57BL/6 Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we observed the effects of cyclosporine A (CsA), an efficient immunosuppressant, on cell proliferation and neuroblast differentiation in the subgranular zone of the dentate gyrus (SZDG) in normal C57BL/6 mice using Ki67 and doublecortin (DCX) immunohistochemical staining, respectively. At 8 weeks of age, vehicle (physiological saline) or CsA was daily administered (40 mg/kg, i.p.) for 1 week. Animals were sacrificed at 2 weeks after last administration. CsA treatment did not show any influences in neurons, astrocytes and microglia based on immunohistochemistry for its markers, respectively. However, in the CsA-treated group, Fluoro-Jade B, a marker for neurodegeneration, positive cells were found in the SZDG, not in the vehicle-treated group. In the vehicle-treated group, Ki67 immunoreactive (+) nuclei were clustered in the SZDG, whereas in the CsA-treated group Ki67+ nuclei were scattered in the SZDG, showing no difference in cell numbers. Numbers of DCX+ neuroblasts with well-developed processes (tertiary dendrites) were much lower in the CsA-treated group than those in the vehicle-treated group; however, numbers of DCX+ neuroblasts with secondary dendrites were similar in both the groups. These results suggest that CsA significantly reduces dendritic outgrowth and complexity from neuroblasts in the SZDG without any affecting in neurons, astrocytes and microglia in normal mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Q, Liu Y, Zou X et al (2008) The hippocampal proteomic analysis of senescence-accelerated mouse: implications of Uchl3 and mitofilin in cognitive disorder and mitochondria dysfunction in SAMP8. Neurochem Res 33:1776–1782

    Article  CAS  PubMed  Google Scholar 

  2. Budson AE (2009) Understanding memory dysfunction. Neurologist 15:71–79

    Article  PubMed  Google Scholar 

  3. Kumaran D, Maguire EA (2009) Novelty signals: a window into hippocampal information processing. Trends Cogn Sci 13:47–54

    Article  PubMed  Google Scholar 

  4. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  PubMed  Google Scholar 

  5. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  6. Toni N, Laplagne DA, Zhao C et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907

    Article  CAS  PubMed  Google Scholar 

  7. Gould E, Tanapat P, Hastings NB, Shors TJ (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3:186–192

    Article  PubMed  Google Scholar 

  8. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    Article  PubMed  Google Scholar 

  9. Faulds D, Goa KL, Benfield P (1993) Cyclosporin: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in immunoregulatory disorders. Drugs 45:953–1040

    Article  CAS  PubMed  Google Scholar 

  10. Herink J, Krejcová G, Bajgar J et al (2003) Cyclosporine A inhibits acetylcholinesterase activity in selected parts of the rat brain. Neurosci Lett 339:251–253

    Article  CAS  PubMed  Google Scholar 

  11. Diaz-Ruiz A, Vergara P, Perez-Severiano F et al (2005) Cyclosporin-A inhibits constitutive nitric oxide synthase activity and neuronal and endothelial nitric oxide synthase expressions after spinal cord injury in rats. Neurochem Res 30:245–251

    Article  CAS  PubMed  Google Scholar 

  12. Uchino H, Minamikawa-Tachino R, Kristian T et al (2002) Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis 10:219–233

    Article  CAS  PubMed  Google Scholar 

  13. Shin YC, Choi KY, Kim WG (2007) Cyclosporin A has a protective effect with induced upregulation of Hsp70 and nNOS on severe spinal cord ischemic injury in rabbits. J Invest Surg 20:113–120

    Article  PubMed  Google Scholar 

  14. Hailer NP (2008) Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 84:211–233

    Article  CAS  PubMed  Google Scholar 

  15. Santos JB, Schauwecker PE (2003) Protection provided by cyclosporin A against excitotoxic neuronal death is genotype dependent. Epilepsia 44:995–1002

    Article  CAS  PubMed  Google Scholar 

  16. Wennersten A, Holmin S, Al Nimer F, Meijer X, Wahlberg LU, Mathiesen T (2006) Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp Neurol 199:339–347

    Article  CAS  PubMed  Google Scholar 

  17. Roitberg BZ, Mangubat E, Chen EY et al (2006) Survival and early differentiation of human neural stem cells transplanted in a nonhuman primate model of stroke. J Neurosurg 105:96–102

    Article  PubMed  Google Scholar 

  18. Kozłowska H, Jabłonka J, Janowski M, Jurga M, Kossut M, Domańska-Janik K (2007) Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev 16:481–488

    Article  PubMed  Google Scholar 

  19. Toriumi H, Yoshikawa M, Matsuda R et al (2009) Treatment of Parkinson’s disease model mice with allogeneic embryonic stem cells: necessity of immunosuppressive treatment for sustained improvement. Neurol Res 31:220–227

    Article  CAS  PubMed  Google Scholar 

  20. Cooper-Kuhn CM, Kuhn HG (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 134:13–21

    Article  CAS  PubMed  Google Scholar 

  21. Karl C, Couillard-Despres S, Prang P et al (2005) Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 92:264–282

    Article  CAS  PubMed  Google Scholar 

  22. Fujisaki Y, Yamauchi A, Dohgu S et al (2002) Cyclosporine A-increased nitric oxide production in the rat dorsal hippocampus mediates convulsions. Life Sci 72:549–556

    Article  CAS  PubMed  Google Scholar 

  23. Sato Y, Takayanagi Y, Onaka T, Kobayashi E (2007) Impact of cyclosporine upon emotional and social behavior in mice. Transplantation 83:1365–1370

    Article  CAS  PubMed  Google Scholar 

  24. Brown J, Cooper-Kuhn CM, Kempermann G et al (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046

    Article  PubMed  Google Scholar 

  25. Couillard-Despres S, Winner B, Schaubeck S et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  26. Hwang IK, Yoo KY, Yi SS et al (2008) Age-related differentiation in newly generated DCX immunoreactive neurons in the subgranular zone of the gerbil dentate gyrus. Neurochem Res 33:867–872

    Article  CAS  PubMed  Google Scholar 

  27. Candelario-Jalil E, Alvarez D, Merino N, León OS (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  CAS  PubMed  Google Scholar 

  28. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  CAS  PubMed  Google Scholar 

  29. Franklin KBJ (1997) Paxinos G. The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  30. Göldner FM, Patrick JW (1996) Neuronal localization of the cyclophilin A protein in the adult rat brain. J Comp Neurol 372:283–293

    Article  PubMed  Google Scholar 

  31. Adams DH, Ponsford S, Gunson B et al (1987) Neurological complications following liver transplantation. Lancet 1:949–951

    Article  CAS  PubMed  Google Scholar 

  32. de Groen PC, Aksamit AJ, Rakela J, Forbes GS, Krom RA (1987) Central nervous system toxicity after liver transplantation. The role of cyclosporine and cholesterol. N Engl J Med 317:861–866

    PubMed  Google Scholar 

  33. Hughes RL (1990) Cyclosporine-related central nervous system toxicity in cardiac transplantation. N Engl J Med 323:420–421

    CAS  PubMed  Google Scholar 

  34. Hinchey J, Chaves C, Appignani B et al (1996) A reversible posterior leukoencephalopathy syndrome. N Engl J Med 334:494–500

    Article  CAS  PubMed  Google Scholar 

  35. Montpied P, Batxelli I, André M et al (2003) Effects of cyclosporine-A on brain lipids and apolipoprotein E, J gene expression in rats. Neuroreport 14:573–576

    Article  CAS  PubMed  Google Scholar 

  36. Nakamuta M, Kohjima M, Fukushima M et al (2005) Cyclosporine suppresses cell growth and collagen production in hepatic stellate cells. Transplant Proc 37:4598–4602

    Article  CAS  PubMed  Google Scholar 

  37. Tannuri AC, Tannuri U, Wakamatsu A, Mello ES, Coelho MC, Dos Santos NA (2008) Effect of the immunosuppressants on hepatocyte proliferation and apoptosis in a young animal model of liver regeneration: an immunohistochemical study using tissue microarrays. Pediatr Transplant 12:40–46

    Article  PubMed  Google Scholar 

  38. Verani R (1986) Cyclosporine nephrotoxicity in the Fischer rat. Clin Nephrol 25(Suppl 1):S9–S13

    CAS  PubMed  Google Scholar 

  39. Hahn HJ, Laube F, Lucke S, Klöting I, Kohnert KD, Warzock R (1986) Toxic effects of cyclosporine on the endocrine pancreas of Wistar rats. Transplantation 41:44–47

    Article  CAS  PubMed  Google Scholar 

  40. Batlle DC, Gutterman C, Tarka J, Prasad R (1986) Effect of short-term cyclosporine A administration on urinary acidification. Clin Nephrol 25(Suppl 1):S62–S69

    CAS  PubMed  Google Scholar 

  41. Helmchen U, Schmidt WE, Siegel EG, Creutzfeldt W (1984) Morphological and functional changes of pancreatic B cells in cyclosporin A-treated rats. Diabetologia 27:416–418

    Article  CAS  PubMed  Google Scholar 

  42. Kowdley KV, Keeffe EB (1995) Hepatotoxicity of transplant immunosuppressive agents. Gastroenterol Clin North Am 24:991–1001

    CAS  PubMed  Google Scholar 

  43. Castilho RF, Hansson O, Brundin P (2000) FK506 and cyclosporin A enhance the survival of cultured and grafted rat embryonic dopamine neurons. Exp Neurol 164:94–101

    Article  CAS  PubMed  Google Scholar 

  44. Feeney CJ, Frantseva MV, Carlen PL et al (2008) Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res 1198:1–15

    Article  CAS  PubMed  Google Scholar 

  45. Guo J, Zeng Y, Liang Y, Wang L, Su H, Wu W (2007) Cyclosporine affects the proliferation and differentiation of neural stem cells in culture. Neuroreport 18:863–868

    Article  CAS  PubMed  Google Scholar 

  46. Mouri A, Noda Y, Shimizu S, Tsujimoto Y, Nabeshima T. The role of cyclophilin D in learning and memory. Hippocampus. doi:10.1002/hipo.20625

  47. Price M, Lang MG, Frank AT et al (2003) Seven cDNAs enriched following hippocampal lesion: possible roles in neuronal responses to injury. Brain Res Mol Brain Res 117:58–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help in this study. This work was supported by the stem cell research program of Ministry of Science & Technology, grants (M10641450002-07N4145-00210), and by a grant (20090K001290) from Brain Research Center of the twenty-first Century Frontier Research Program funded by the Ministry of Education, Science and Technology, the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo-Ho Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Yi, S.S., Shin, J.H. et al. Cyclosporine A Reduces Dendritic Outgrowth of Neuroblasts in the Subgranular Zone of the Dentate Gyrus in C57BL/6 Mice. Neurochem Res 35, 465–472 (2010). https://doi.org/10.1007/s11064-009-0082-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0082-x

Keywords

Navigation