Skip to main content
Log in

Age-related Differentiation in Newly Generated DCX Immunoreactive Neurons in the Subgranular Zone of the Gerbil Dentate Gyrus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated age-related changes of newborn neurons in the gerbil dentate gyrus using doublecortin (DCX), a marker of neuronal progenitors which differentiate into neurons in the brain. In the postnatal month 1 (PM 1) group, DCX immunoreactivity was detected in the subgranular zone of the dentate gyrus, but DCX immunoreactive neurons did not have fully developed processes. Thereafter, DCX immunoreactivity and its protein levels in the dentate gyrus were found to decrease with age. Between PM 3 and PM 18, DCX immunoreactive neuronal progenitors showed well-developed processes which projected to the granular layer of the dentate gyrus, but at PM 24, a few DCX immunoreactive neuronal progenitors were detected in the subgranular zone of the dentate gyrus. DCX protein level in the dentate gyrus at PM 1 was high, thereafter levels of DCX were decreased with time. The authors suggest that a decrease of DCX immunoreactivity and its protein level with age may be associated with aging processes in the hippocampal dentate gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rich ST (1968) The Mongolian gerbil (Meriones unguiculatus) in research. Lab Anim Care 18:235–243

    PubMed  Google Scholar 

  2. Hafidi A, Lanjun G, Sanes DH (1999) Age-dependent failure of axon regeneration in organotypic culture of gerbil auditory midbrain. J Neurobiol 41:267–280

    Article  PubMed  CAS  Google Scholar 

  3. He DZ, Dallos P (1997) Expression of potassium channels in gerbil outer hair cells during development does not require neural induction. Dev Brain Res 103:95–97

    Article  CAS  Google Scholar 

  4. Hwang IK, Yoo KY, Jung BK et al (2006) Correlations between neuronal loss, decrease of memory, and decrease expression of brain-derived neurotrophic factor in the gerbil hippocampus during normal aging. Exp Neurol 201:75–83

    Article  PubMed  CAS  Google Scholar 

  5. Hwang IK, Yoo KY, Kim DH et al (2007) Time course of changes in pyridoxal 5′-phosphate (vitamin B6 active form) and its neuroprotection in experimental ischemic damage. Exp Neurol 206:114–125

    Article  PubMed  CAS  Google Scholar 

  6. Hwang IK, Yoo KY, Kim DW et al (2006) Ionized calcium-binding adapter molecule 1 immunoreactive cells change in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem Res 31:957–965

    Article  PubMed  CAS  Google Scholar 

  7. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    Article  PubMed  CAS  Google Scholar 

  8. Larsson A, Wilhelmsson U, Pekna M, Pekny M (2004) Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP−/−Vim−/− mice. Neurochem Res 29:2069–2073

    Article  PubMed  CAS  Google Scholar 

  9. Paizanis E, Kelaï S, Renoir T, Hamon M, Lanfumey L (2007) Life-long hippocampal neurogenesis: environmental, pharmacological and neurochemical modulations. Neurochem Res 32:1762–1771

    Article  PubMed  CAS  Google Scholar 

  10. Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871

    Article  PubMed  CAS  Google Scholar 

  11. Snyder JS, Hong N, McDonald RJ, Wojtowicz JM (2005) A role for adult hippocampal neruogenesis in spatial long-term memory. Neuroscience 130:843–852

    Article  PubMed  CAS  Google Scholar 

  12. Aztiria E, Capodieci G, Arancio L, Leanza G (2007) Extensive training in a maze task reduces neurogenesis in the adult rat dentate gyrus probably as a result of stress. Neurosci Lett 416:133–137

    Article  PubMed  CAS  Google Scholar 

  13. Tang H, Wang Y, Xie L et al (2007) Effect of neural precursor proliferation level on neurogenesis in rat brain during aging and after focal ischemia. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2007.06.004

  14. Jin K, Mao XO, Greenberg DA (2004) Proteomic analysis of neuronal hypoxia in vitro. Neurochem Res 29:1123–1128

    Article  PubMed  CAS  Google Scholar 

  15. Rao MS, Hattiangady B, Shetty AK (2006) The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cell 5:545–558

    Article  PubMed  CAS  Google Scholar 

  16. Karl C, Couillard-Després S, Prang P et al (2005) Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 92:264–282

    Article  PubMed  CAS  Google Scholar 

  17. Yamada M, Onodera M, Mizuno Y, Mochizuki H (2004) Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated adult mice. Neuroscience 124:173–181

    Article  PubMed  CAS  Google Scholar 

  18. Cooper-Kuhn CM, Kuhn HG (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Dev Brain Res 134:13–21

    Article  CAS  Google Scholar 

  19. Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  PubMed  CAS  Google Scholar 

  20. Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644

    Article  PubMed  CAS  Google Scholar 

  21. Yang HK, Sundholm-Peters NL, Goings GE, Walker AS, Hylandm K, Szele FG (2004) Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res 76:282–295

    Article  PubMed  CAS  Google Scholar 

  22. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  PubMed  CAS  Google Scholar 

  23. Driscoll I, Howard SR, Stone JC et al (2006) The aging hippocampus: a multi-level analysis in the rat. Neuroscience 139:1173–1185

    Article  PubMed  CAS  Google Scholar 

  24. Cameron HA, McKay RDG (2001) Adult neurogenesis produces of large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  PubMed  CAS  Google Scholar 

  25. Heine VM, Maslam S, Joëls M, Lucassen PJ (2004) Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 25:361–375

    Article  PubMed  CAS  Google Scholar 

  26. Hwang IK, Yoo KY, Li H et al (2007) Differences in doublecortin immunoreactivity and protein levels in the hippocampal dentate gyrus between adult and aged dogs. Neurochem Res 32:1604–1609

    Article  PubMed  CAS  Google Scholar 

  27. Kuhn HG, Dickinson-Anson H, Gage F (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  28. Seki T, Arai Y (1995) Age-related production of new granule cells in the adult dentate gyrus. Neuroreport 6:2479–2482

    Article  PubMed  CAS  Google Scholar 

  29. Yu IT, Kim JS, Lee SH, Lee YS, Son H (2003) Chronic lithium enhances hippocampal long-term potentiation, but not neurogenesis, in the aged rat dentate gyrus. Biochem Biophys Res Commun 303:1193–1198

    Article  PubMed  CAS  Google Scholar 

  30. He J, Crews FT (2007) Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol Biochem Behav 86:327–333

    Article  PubMed  CAS  Google Scholar 

  31. Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73

    Article  PubMed  CAS  Google Scholar 

  32. Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA 100:14385–14390

    Article  PubMed  CAS  Google Scholar 

  33. Wati H, Kudo K, Qiao C, Kuroki T, Kanba S (2006) A decreased survival of proliferated cells in the hippocampus is associated with a decline in spatial memory in aged rats. Neurosci Lett 399:171–174

    Article  PubMed  CAS  Google Scholar 

  34. Hattiangady B, Shetty AK (2006) Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging doi:10.1016/j.neurobiolaging.2006.09.015

Download references

Acknowledgements

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for their technical help in this study. This work was supported by the stem cell research program of Ministry of Science & Technology, grants (M10641450001-06N4145-00110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeo Sung Yoon or Moo-Ho Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Yoo, KY., Yi, S.S. et al. Age-related Differentiation in Newly Generated DCX Immunoreactive Neurons in the Subgranular Zone of the Gerbil Dentate Gyrus. Neurochem Res 33, 867–872 (2008). https://doi.org/10.1007/s11064-007-9528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9528-1

Keywords

Navigation