Skip to main content
Log in

Stem Cells Downregulate the Elevated Levels of Tissue Plasminogen Activator in Rats After Spinal Cord Injury

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We investigated the involvement of tPA after SCI in rats and effect of treatment with human umbilical cord blood derived stem cells. tPA expression and activity were determined in vivo after SCI in rats and in vitro in rat embryonic spinal neurons in response to injury with staurosporine, hydrogen peroxide and glutamate. The activity and/or expression of tPA increased after SCI and reached peak levels on day 21 post-SCI. Notably, the tPA mRNA activity was upregulated by 310-fold compared to controls on day 21 post-SCI. As expected, MBP expression is minimal at the time of peak tPA activity and vice versa. Implantation of hUCB after SCI resulted in the downregulation of elevated tPA activity/expression in vivo in rats as well as in vitro in spinal neurons. Our results demonstrated the involvement of tPA in the secondary pathogenesis after SCI as well as the therapeutic potential of hUCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

Abbreviations

BCA:

Bicinchoninic acid

BDNF:

Brain-derived neurotrophic factor

BSA:

Bovine serum albumin

CNS:

Central nervous system

DAB:

Diaminobenzidine

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

HRP:

Horse radish peroxidase

hUCB:

Human umbilical cord blood derived stem cells

MBP:

Myelin basic protein

MMP:

Matrix metalloproteinase

NMDA:

N-methyl-D-aspartate

NT-3:

Neurotrophic hormone-3

PAGE:

Poly acrylamide gel electrophoresis

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PMSF:

Phenyl methane sulfonyl fluoride

SCI:

Spinal cord injury

SDS:

Sodium dodecyl sulphate

STP:

Staurosporine

tPA:

Tissue plasminogen activator

References

  1. Collen D (2001) Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology Am Soc Hematol Educ Program 1–9. doi:10.1182/asheducation-2001.1.1

  2. Collen D (1999) The plasminogen (fibrinolytic) system. Thromb Haemost 82:259–270

    PubMed  CAS  Google Scholar 

  3. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    PubMed  CAS  Google Scholar 

  4. Masos T, Miskin R (1997) mRNAs encoding urokinase-type plasminogen activator and plasminogen activator inhibitor-1 are elevated in the mouse brain following kainate-mediated excitation. Brain Res Mol Brain Res 47:157–169. doi:10.1016/S0169-328X(97)00040-5

    Article  PubMed  CAS  Google Scholar 

  5. Salles FJ, Strickland S (2002) Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci 22:2125–2134

    PubMed  CAS  Google Scholar 

  6. Teesalu T, Kulla A, Simisker A et al (2004) Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. Thromb Haemost 92:358–368

    PubMed  CAS  Google Scholar 

  7. Yepes M, Lawrence DA (2004) New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Exp Biol Med (Maywood) 229:1097–1104

    CAS  Google Scholar 

  8. Qian Z, Gilbert ME, Colicos MA et al (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361:453–457. doi:10.1038/361453a0

    Article  PubMed  CAS  Google Scholar 

  9. Zhuo M, Holtzman DM, Li Y et al (2000) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 20:542–549

    PubMed  CAS  Google Scholar 

  10. Shin CY, Kundel M, Wells DG (2004) Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J Neurosci 24:9425–9433. doi:10.1523/JNEUROSCI.2457-04.2004

    Article  PubMed  CAS  Google Scholar 

  11. Baranes D, Lederfein D, Huang YY et al (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21:813–825. doi:10.1016/S0896-6273(00)80597-8

    Article  PubMed  CAS  Google Scholar 

  12. Gualandris A, Jones TE, Strickland S et al (1996) Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci 16:2220–2225

    PubMed  CAS  Google Scholar 

  13. Parmer RJ, Mahata M, Mahata S et al (1997) Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J Biol Chem 272:1976–1982. doi:10.1074/jbc.272.3.1976

    Article  PubMed  CAS  Google Scholar 

  14. Pittman RN (1985) Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev Biol 110:91–101. doi:10.1016/0012-1606(85)90067-3

    Article  PubMed  CAS  Google Scholar 

  15. Akassoglou K, Kombrinck KW, Degen JL et al (2000) Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol 149:1157–1166. doi:10.1083/jcb.149.5.1157

    Article  PubMed  CAS  Google Scholar 

  16. Siconolfi LB, Seeds NW (2001) Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. J Neurosci 21:4336–4347

    PubMed  CAS  Google Scholar 

  17. Siconolfi LB, Seeds NW (2001) Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. J Neurosci 21:4348–4355

    PubMed  CAS  Google Scholar 

  18. Kim YH, Park JH, Hong SH et al (1999) Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science 284:647–650. doi:10.1126/science.284.5414.647

    Article  PubMed  CAS  Google Scholar 

  19. Cammer W, Bloom BR, Norton WT et al (1978) Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: a possible mechanism of inflammatory demyelination. Proc Natl Acad Sci USA 75:1554–1558. doi:10.1073/pnas.75.3.1554

    Article  PubMed  CAS  Google Scholar 

  20. Rogove AD, Siao C, Keyt B et al (1999) Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell Sci 112(Pt 22):4007–4016

    PubMed  CAS  Google Scholar 

  21. Tsirka SE, Gualandris A, Amaral DG et al (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377:340–344. doi:10.1038/377340a0

    Article  PubMed  CAS  Google Scholar 

  22. Nicole O, Docagne F, Ali C et al (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7:59–64. doi:10.1038/83358

    Article  PubMed  CAS  Google Scholar 

  23. Cuzner ML, Opdenakker G (1999) Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J Neuroimmunol 94:1–14. doi:10.1016/S0165-5728(98)00241-0

    Article  PubMed  CAS  Google Scholar 

  24. Paterson PY, Koh CS, Kwaan HC (1987) Role of the clotting system in the pathogenesis of neuroimmunologic disease. Fed Proc 46:91–96

    PubMed  CAS  Google Scholar 

  25. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70. doi:10.1038/71555

    Article  PubMed  CAS  Google Scholar 

  26. Smith T, Groom A, Zhu B et al (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66. doi:10.1038/71548

    Article  PubMed  CAS  Google Scholar 

  27. Herbert CB, Bittner GD, Hubbell JA (1996) Effects of fibinolysis on neurite growth from dorsal root ganglia cultured in two- and three-dimensional fibrin gels. J Comp Neurol 365:380–391. doi :10.1002/(SICI)1096-9861(19960212)365:3<380::AID-CNE4>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  28. Uhm JH, Dooley NP, Oh LY et al (1998) Oligodendrocytes utilize a matrix metalloproteinase, MMP-9, to extend processes along an astrocyte extracellular matrix. Glia 22:53–63. doi :10.1002/(SICI)1098-1136(199801)22:1<53::AID-GLIA5>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  29. Bingham WG, Goldman H, Friedman SJ et al (1975) Blood flow in normal and injured monkey spinal cord. J Neurosurg 43:162–171

    Article  PubMed  CAS  Google Scholar 

  30. Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365:42–53. doi:10.1016/0006-8993(86)90720-1

    Article  PubMed  CAS  Google Scholar 

  31. Faden AI, Simon RP (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 23:623–626. doi:10.1002/ana.410230618

    Article  PubMed  CAS  Google Scholar 

  32. Wrathall JR, Teng YD, Choiniere D et al (1992) Evidence that local non-NMDA receptors contribute to functional deficits in contusive spinal cord injury. Brain Res 586:140–143. doi:10.1016/0006-8993(92)91384-Q

    Article  PubMed  CAS  Google Scholar 

  33. Milvy P, Kakari S, Campbell JB et al (1973) Paramagnetic species and radical products in cat spinal cord. Ann N Y Acad Sci 222:1102–1111. doi:10.1111/j.1749-6632.1973.tb15327.x

    Article  PubMed  CAS  Google Scholar 

  34. Banik NL, Hogan EL, Powers JM et al (1986) Proteolytic enzymes in experimental spinal cord injury. J Neurol Sci 73:245–256. doi:10.1016/0022-510X(86)90149-8

    Article  PubMed  CAS  Google Scholar 

  35. Balentine JD (1978) Pathology of experimental spinal cord trauma II. Ultrastructure of axons and myelin. Lab Invest 39:254–266

    PubMed  CAS  Google Scholar 

  36. Balentine JD, Hilton C (1980) Ultrastructural pathology of axons and myelin in calcium-induced myelopathy. J Neuropathol Exp Neurol 39:339

    Article  Google Scholar 

  37. Crowe MJ, Bresnahan JC, Shuman SL et al (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76. doi:10.1038/nm0197-73

    Article  PubMed  CAS  Google Scholar 

  38. Abe Y, Nakamura H, Yoshino O et al (2003) Decreased neural damage after spinal cord injury in tPA-deficient mice. J Neurotrauma 20:43–57. doi:10.1089/08977150360517173

    Article  PubMed  Google Scholar 

  39. Dasari VR, Spomar DG, Gondi CS et al (2007) Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 24:391–410. doi:10.1089/neu.2006.0142

    Article  PubMed  Google Scholar 

  40. Dasari VR, Spomar DG, Li L et al (2008) Umbilical cord blood stem cell mediated downregulation of Fas improves functional recovery of rats after spinal cord injury. Neurochem Res 33:134–149. doi:10.1007/s11064-007-9426-6

    Article  PubMed  CAS  Google Scholar 

  41. Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–126

    Article  PubMed  CAS  Google Scholar 

  42. Ankarcrona M, Dypbukt JM, Bonfoco E et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973. doi:10.1016/0896-6273(95)90186-8

    Article  PubMed  CAS  Google Scholar 

  43. Andrade-Gordon P, Strickland S (1986) Interaction of heparin with plasminogen activators and plasminogen: effects on the activation of plasminogen. Biochemistry 25:4033–4040. doi:10.1021/bi00362a007

    Article  PubMed  CAS  Google Scholar 

  44. Lu W, Bhasin M, Tsirka SE (2002) Involvement of tissue plasminogen activator in onset and effector phases of experimental allergic encephalomyelitis. J Neurosci 22:10781–10789

    PubMed  CAS  Google Scholar 

  45. Katayama Y, Becker DP, Tamura T et al (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    Article  PubMed  CAS  Google Scholar 

  46. Lee JM, Grabb MC, Zipfel GJ et al (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731. doi:10.1172/JCI11003

    Article  PubMed  CAS  Google Scholar 

  47. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    PubMed  CAS  Google Scholar 

  48. Osterwalder T, Contartese J, Stoeckli ET et al (1996) Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 15:2944–2953

    PubMed  CAS  Google Scholar 

  49. Akenami F, Sirén V, Koskiniemi M et al (1996) Cerebrospinal fluid activity of tissue plasminogen activator in patients with neurological diseases. J Clin Pathol 49:577–580

    Article  PubMed  CAS  Google Scholar 

  50. Cuzner M, Gveric D, Strand C et al (1996) The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55:1194–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Illinois Regenerative Medicine Institute, a program of the Illinois Department of Public Health, through funds available from the Illinois Department of Healthcare and Family Services. We thank Peggy Mankin and Noorjehan Ali for technical assistance. We thank Shellee Abraham for manuscript preparation and Diana Meister and Sushma Jasti for manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasti S. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veeravalli, K.K., Dasari, V.R., Tsung, A.J. et al. Stem Cells Downregulate the Elevated Levels of Tissue Plasminogen Activator in Rats After Spinal Cord Injury. Neurochem Res 34, 1183–1194 (2009). https://doi.org/10.1007/s11064-008-9894-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9894-3

Keywords

Navigation