Skip to main content
Log in

Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.

Graphical Abstract

After spinal cord injury (SCI), cell death occurs, represented by necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis. Various forms of neuronal cell death are important factors leading to neurological dysfunction after SCI, throughout the entire course of the disease and affecting the progression of the disease in various ways. Regulating various types of cell death can effectively improve neurological dysfunction. This figure briefly displays the cellular manifestations, pathways, and key mechanisms of various cell death modes after SCI and lists the existing therapies for regulating cell death after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. GBD (2016) Traumatic Brain Injury and Spinal Cord Injury Collaborators (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1):56–87

    Google Scholar 

  2. Hu X, Xu W, Ren YL, Wang ZJ, He XL, Huang R, Ma B, Zhao J et al (2023) Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 8(1):245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karamian BA, Siegel N, Nourie B, Serruya MD, Heary RF, Harrop JS, Vaccaro AR (2022) The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J Orthop Traumatol 23(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anjum A, Yazid MD, Daud MF, Idris J, Hwei Ng AM, Naicker AS, Ismail OHR, Kumar RKA et al (2020) Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21(20):7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abbaszadeh F, Fakhri S, Khan H (2020) Targeting apoptosis and autophagy following spinal cord injury: therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 160:105069

    Article  CAS  PubMed  Google Scholar 

  6. Shi ZJ, Yuan SY, Shi LL, Li JH, Ning GZ, Kong XH, Feng SQ (2021) Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif 54(3):e12992

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang RY, Pan JY, Wang YK, Xia PH, Tai ML, Jiang ZH, Chen G (2022) Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci 16:1005399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He XG, Li Y, Deng B, Lin AX, Zhang GZ, Ma M, Wang YG, Yang Y et al (2022) The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities. Cell Prolif 55(9):e13275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hu XL, Xu Y, Zhang HJ, Li Y, Wang XY, Xu C, Ni WF, Zhou KL (2022) Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res 40:125–134

    Article  CAS  PubMed  Google Scholar 

  12. Xu XB, Lai YY, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39(1): BSR20180992

  13. Wang JL, Luo X, Liu L (2019) Targeting CARD6 attenuates spinal cord injury (SCI) in mice through inhibiting apoptosis, inflammation and oxidative stress associated ROS production. Aging (Albany NY) 11(24):12213–12235

    Article  CAS  PubMed  Google Scholar 

  14. Yu WR, Fehlings MG (2011) Fas/FasL-mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application. Acta Neuropathol 122(6):747–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen J, Wang ZG, Zheng ZM, Chen Y, Khor S, Shi KS, He ZL, Wang QQ et al (2017) Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis 8(10):e3090

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bi YL, Chen X, Cao Y, Yu DS, Zhao JA, Jing Y, Lv G (2020) Nuclear heme oxidase-1 inhibits endoplasmic reticulum stress-mediated apoptosis after spinal cord injury. Biomed Res Int 2020:7576063

    Article  PubMed  PubMed Central  Google Scholar 

  17. Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26(4):605–616

    Article  CAS  PubMed  Google Scholar 

  18. Chen RH, Chen YH, Huang TY (2019) Ubiquitin-mediated regulation of autophagy. J Biomed Sci 26(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou KL, Zheng ZL, Li Y, Han W, Zhang J, Mao YQ, Chen HW, Zhang WY et al (2020) TFE3, a potential therapeutic target for spinal cord injury via augmenting autophagy flux and alleviating ER stress. Theranostics 10(20):9280–9302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dai WY, Wang XG, Teng HL, Li C, Wang B, Wang J (2019) Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int Immunopharmacol 66:215–223

    Article  CAS  PubMed  Google Scholar 

  21. Rong YL, Fan J, Ji CY, Wang ZH, Ge XH, Wang JX, Ye W, Yin GY et al (2022) USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ 29(6):1164–1175

    Article  CAS  PubMed  Google Scholar 

  22. Liu S, Sarkar C, Dinizo M, Faden AI, Koh EY, Lipinski MM, Wu J (2015) Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 6:e1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liao HY, Wang ZQ, Ran R, Zhou KS, Ma CW, Zhang HH (2021) Biological functions and therapeutic potential of autophagy in spinal cord injury. Front Cell Dev Biol 9:761273

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu FZ, Wei XJ, Wu YQ, Kong XX, Hu AP, Tong SL, Liu YL, Gong FH et al (2018) Chloroquine promotes the recovery of acute spinal cord injury by inhibiting autophagy-associated inflammation and endoplasmic reticulum stress. J Neurotrauma 35(12):1329–1344

    Article  PubMed  Google Scholar 

  25. He M, Ding YT, Chu C, Tang J, Xiao Q, Luo ZG (2016) Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci USA 113(40):11324–11329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang HJ, Ni WF, Yu GX, Geng YB, Lou JS, Qi JJ, Chen YT, Li FD et al (2023) 3,4-Dimethoxychalcone, a caloric restriction mimetic, enhances TFEB-mediated autophagy and alleviates pyroptosis and necroptosis after spinal cord injury. Theranostics 13(2):810–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bisicchia E, Latini L, Cavallucci V, Sasso V, Nicolin V, Molinari M, D’Amelio M, Viscomi MT (2017) Autophagy inhibition favors survival of rubrospinal neurons after spinal cord hemisection. Mol Neurobiol 54(7):4896–4907

    Article  CAS  PubMed  Google Scholar 

  28. Ray SK (2020) Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen Res 15(9):1601–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gao WT, Wang XY, Zhou Y, Wang XQ, Yu Y (2022) Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 7(1):196

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tan YX, Chen QZ, Li XL, Zeng ZY, Xiong W, Li GY, Li XY, Yang JB et al (2021) Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res 40(1):153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rao ZP, Zhu YT, Yang P, Chen Z, Xia YQ, Qiao CQ, Liu WJ, Deng HZ et al (2022) Pyroptosis in inflammatory diseases and cancer. Theranostics 12(9):4310–4329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao SZ, Li XT, Wang J, Wang HG (2021) The role of the effects of autophagy on NLRP3 inflammasome in inflammatory nervous system diseases. Front Cell Dev Biol 9:657478

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dupont N, Jiang SY, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 30(23):4701–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taabazuing CY, Okondo MC, Bachovchin DA (2017) Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 24(4):507-514.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mamun AA, Wu YQ, Monalisa I, Jia C, Zhou KL, Munir F, Xiao J (2020) Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 28:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yanagisawa S, Katoh H, Imai T, Nomura S, Watanabe M (2019) The relationship between inflammasomes and the endoplasmic reticulum stress response in the injured spinal cord. Neurosci Lett 705:54–59

    Article  CAS  PubMed  Google Scholar 

  38. Liu ZY, Yao XQ, Jiang WS, Li W, Zhu SY, Liao CR, Zou L, Ding RT et al (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 17(1):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu S, Wang J, Jiang JY, Song J, Zhu W, Zhang F, Shao MH, Xu HC et al (2020) TLR4 promotes microglial pyroptosis via lncRNAF630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 11(8):693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng G, Zhan Y, Wang H, Luo Z, Zheng F, Zhou Y (2019) Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMed 40:643–654

    Article  Google Scholar 

  41. Zhou CH, Zheng JF, Fan YP, Wu JS (2022) TI: NLRP3 inflammasome-dependent pyroptosis in CNS trauma: a potential therapeutic target. Front Cell Dev Biol 10:821225

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yin J, Gong G, Wan WH, Liu XH (2022) Pyroptosis in spinal cord injury. Front Cell Neurosci 16:949939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu XL, Chen HW, Xu H, Wu YS, Wu CY, Wu C, Jia C, Li Y et al (2020) Role of pyroptosis in traumatic brain and spinal cord injuries. Int J Biol Sci 16(12):2042–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan J, Wan PX, Choksi S, Liu ZG (2022) Necroptosis and tumor progression. Trends. Cancer 8(1):21–27

    CAS  Google Scholar 

  45. Chen J, Kos R, Garssen J, Redegeld F (2019) Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target. Cells 8(12):1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen XY, Dai YH, Wan XX, Hu XM, Zhao WJ, Ban XX, Wan H, Huang K et al (2022) ZBP1-mediated necroptosis: mechanisms and therapeutic implications. Molecules 28(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tao Y, Murakami Y, Vavvas DG, Sonoda KH (2022) Necroptosis and neuroinflammation in retinal degeneration. Front Neurosci 16:911430

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gong YT, Fan ZY, Luo GP, Yang C, Huang QY, Fan K, Cheng H, Jin KZ et al (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18(5):1106–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiao J, Wang Y, Ren P, Sun S, Wu M (2019) Necrosulfonamide ameliorates neurological impairment in spinal cord injury by improving antioxidative capacity. Front Pharmacol 10:1538

    Article  CAS  PubMed  Google Scholar 

  51. Liu S, Li Y, Choi HMC, Sarkar C, Koh EY, Wu JF, Lipinski MM (2018) Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis 9(5):476

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yuan JY, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shao LF, Liu XJ, Zhu SX, Liu C, Gao YL, Xu XD (2018) The role of Smurf1 in neuronal necroptosis after lipopolysaccharide-induced neuroinflammation. Cell Mol Neurobiol 38(4):809–816

    Article  CAS  PubMed  Google Scholar 

  54. Fan H, Tang HB, Shan LQ, Liu SC, Huang DG, Chen X, Chen Z, Yang M et al (2019) Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. J Neuroinflammation 16(1):206

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kanno H, Ozawa H, Handa K, Murakami T, Itoi E (2020) Changes in expression of receptor-interacting protein kinase 1 in secondary neural tissue damage following spinal cord injury. Neurosci Insights 15:2633105520906402

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ et al (2012) Ferroptosis: an irondependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  58. Conrad M, Pratt DA (2019) The chemical basis of ferroptosis. Nat Chem Biol 15(12):1137–1147

    Article  CAS  PubMed  Google Scholar 

  59. Li F, Wang HF, Chen H, Guo JN, Dang XQ, Ru Y, Wang HY (2022) Mechanism of ferroptosis and its role in spinal cord injury. Front Neurol 13:926780

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stockwell BR, Jiang XJ, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30:478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Proneth B, Conrad M (2019) Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 26:14–24

    Article  CAS  PubMed  Google Scholar 

  62. Bai XY, Liu XL, Deng ZZ, Wei DM, Zhang D, Xi HL, Wang QY, He MZ et al (2023) Ferroptosis is a new therapeutic target for spinal cord injury. Front Neurosci 17:1136143

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen YX, Zuliyaer T, Liu B, Guo S, Yang DG, Gao F, Yu Y, Yang ML et al (2022) Sodium selenite promotes neurological function recovery after spinal cord injury by inhibiting ferroptosis. Neural Regen Res 17(12):2702–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feng Z, Min LX, Chen H, Deng WW, Tan ML, Liu HL, Hou JM (2021) Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol 43:101984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li JZ, Fan BY, Sun T, Wang XX, Li JJ, Zhang JP, Gu GJ, Shen WY et al (2023) Bioinformatics analysis of ferroptosis in spinal cord injury. Neural Regen Res 18(3):626–633

    Article  CAS  PubMed  Google Scholar 

  66. Li C, Deng XB, Xie XW, Ying Liu Y, Angeli JPF, Lai L (2018) Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Front Pharmacol 9:1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375:1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang D, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res England 32:417–418

    Article  Google Scholar 

  69. Cobine PA, Brady DC (2022) Cuproptosis: cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell 82(10):1786–1787

    Article  CAS  PubMed  Google Scholar 

  70. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A (2020) Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci 21(23):9259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cao SH, Wang Q, Sun ZZ, Zhang Y, Liu QQ, Huang Q, Ding GX, Jia ZJ (2023) Role of cuproptosis in understanding diseases. Hum Cell 36(4):1244–1252

    Article  PubMed  Google Scholar 

  72. Li CC, Wu CS, Ji CY, Xu GH, Chen JJ, Zhang JL, Hong HX, Liu Y et al (2023) The pathogenesis of DLD-mediated cuproptosis induced spinal cord injury and its regulation on immune microenvironment. Front Cell Neurosci 17:1132015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Balas M, Guttman MP, Badhiwala JH, Lebovic G, Nathens AB, da Costa L, Zador Z, Spears J et al (2022) Earlier surgery reduces complications in acute traumatic thoracolumbar spinal cord injury: analysis of a multi-center cohort of 4108 patients. J Neurotrauma 39(3–4):277–284

    Article  PubMed  Google Scholar 

  74. OSCIS investigators (2021) Effect of early vs delayed surgical treatment on motor recovery in incomplete cervical spinal cord injury with preexisting cervical stenosis: a randomized clinical trial. JAMA Netw Open 4(11):e2133604

    Article  Google Scholar 

  75. Bowers CA, Kundu B, Hawryluk GWJ (2016) Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate. Neural Regen Res 11(6):882–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sámano C, Nistri A (2019) Mechanism of neuroprotection against experimental spinal cord injury by riluzole or methylprednisolone. Neurochem Res 44(1):200–213

    Article  PubMed  Google Scholar 

  77. Lima R, Gomes ED, Cibrão JR, Rocha LA, Assunção-Silva RC, Rodrigues CS, Neves-Carvalho A, Monteiro S et al (2021) Levetiracetam treatment leads to functional recovery after thoracic or cervical injuries of the spinal cord. NPJ Regen Med 6(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Flack JA, Sharma KD, Xie JYH (2022) Delving into the recent advancements of spinal cord injury treatment: a review of recent progress. Neural Regen Res 17(2):283–291

    Article  CAS  PubMed  Google Scholar 

  79. Keefe KM, Sheikh IS, Smith GM (2017) Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci 18(3):548

    Article  PubMed  PubMed Central  Google Scholar 

  80. Qu WR, Chen BP, Shu WT, Tian H, Ou XL, Zhang X, Wang YN, Wu MF (2020) Polymer-based scaffold strategies for spinal cord repair and regeneration. Front Bioeng Biotechnol 8:590549

    Article  PubMed  PubMed Central  Google Scholar 

  81. Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A (2022) Inflammation: a target for treatment in spinal cord injury. Cells 11(17):2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu SF, Xie L, Liu ZC, Li CW, Liang Y (2019) MLN4924 exerts a neuroprotective effect against oxidative stress via Sirt1 in spinal cord ischemia-reperfusion injury. Oxid Med Cell Longev 2019:7283639

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang XK, Li X, Zuo XS, Liang ZW, Ding T, Li K, Ma YG, Li PH et al (2021) Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation 18(1):256

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li ZM, Zhao TF, Ding J, Gu HC, Wang QX, Wang YF, Zhang DT, Gao CY (2022) A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 19:550–568

    PubMed  PubMed Central  Google Scholar 

  85. Robins-Steele S, Nguyen DH, Fehlings MG (2012) The delayed post-injury administration of soluble fas receptor attenuates post-traumatic neural degeneration and enhances functional recovery after traumatic cervical spinal cord injury. J Neurotrauma 29(8):1586–99

    Article  PubMed  Google Scholar 

  86. Zhou X, Chu XL, Yuan HT, Qiu J, Zhao CL, Xin DQ, Li TT, Ma WW et al (2019) Mesenchymal stem cell derived EVs mediate neuroprotection after spinal cord injury in rats via the microRNA-21-5p/FasL gene axis. Biomed Pharmacother 115:108818

    Article  CAS  PubMed  Google Scholar 

  87. Liu RX, Peng ZB, Zhang YB, Li R, Wang YS (2021) Upregulation of miR-128 inhibits neuronal cell apoptosis following spinal cord injury via FasL downregulation by repressing ULK1. Mol Med Rep 24(3):667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mao YQ, Du JQ, Chen XH, Mamun AA, Cao L, Yang YH, Mubwandarikwa J, Zaeem M et al (2022) Maltol promotes mitophagy and inhibits oxidative stress via the Nrf2/PINK1/Parkin pathway after spinal cord injury. Oxid Med Cell Longev 2022:1337630

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xiao SN, Zhong NS, Yang QM, Li AA, Tong WL, Zhang Y, Yao GL, Wang SJ et al (2022) Aucubin promoted neuron functional recovery by suppressing inflammation and neuronal apoptosis in a spinal cord injury model. Int Immunopharmacol 111:109163

    Article  CAS  PubMed  Google Scholar 

  90. Li X, Zhan JH, Hou Y, Hou YH, Chen SD, Luo D, Luan JY, Wang L et al (2019) Coenzyme Q10 regulation of apoptosis and oxidative stress in H2O2 induced BMSC death by modulating the Nrf-2/NQO-1 signaling pathway and its application in a model of spinal cord injury. Oxid Med Cell Longev 2019:6493081

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li HT, Zhang XR, Qi X, Zhu X, Cheng LM (2019) Icariin inhibits endoplasmic reticulum stress-induced neuronal apoptosis after spinal cord injury through modulating the PI3K/AKT signaling pathway. Int J Biol Sci 15(2):277–286

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhou YL, Zhang HY, Zheng BB, Ye LB, Zhu SP, Johnson NR, Wang ZG, Wei XJ et al (2016) Retinoic acid induced-autophagic flux inhibits ER-stress dependent apoptosis and prevents disruption of blood-spinal cord barrier after spinal cord injury. Int J Biol Sci 12(1):87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen ZR, Guo HH, Lu ZD, Sun KN, Jin QH (2019) Hyperglycemia aggravates spinal cord injury through endoplasmic reticulum stress mediated neuronal apoptosis, gliosis and activation. Biomed Pharmacother 112:108672

    Article  CAS  PubMed  Google Scholar 

  94. Wang C, Zhang L, Ndong JDLC, Hettinghouse A, Sun GD, Chen CH, Zhang C, Liu RH et al (2019) Progranulin deficiency exacerbates spinal cord injury by promoting neuroinflammation and cell apoptosis in mice. J Neuroinflammation 16(1):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He XG, Guo XD, Deng B, Kang JH, Liu WZ, Zhang GZ, Wang YG, Yang Y et al (2023) HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects. Exp Neurol 361:114301

    Article  CAS  PubMed  Google Scholar 

  96. Huang Y, Ren H, Gao X, Cai DY, Shan HJ, Bai JY, Sheng L, Jin Y, et al (2022) Amlodipine improves spinal cord injury repair by inhibiting motoneuronal apoptosis through autophagy upregulation. Spine (Phila Pa 1976) 47(17): E570-E578

  97. Wu CY, Chen HW, Zhuang R, Zhang HJ, Wang YL, Hu XL, Xu Y, Li JF et al (2021) Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. Int J Biol Sci 17(4):1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li L, Jiang HK, Li YP, Guo YP (2015) Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury. J Biomed Sci 22(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li Y, Lei ZF, Ritzel RM, He JY, Li H, Choi HMC, Lipinski MM, Wu JF (2022) Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice. Theranostics 12(12):5364–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shi Q, Wu YH, Zhang BK, Wu ST, Wang X, Lin FQ, Zhang GW, Lian XF et al (2022) Progranulin promotes functional recovery in rats with acute spinal cord injury via autophagy-induced anti-inflammatory microglial polarization. Mol Neurobiol 59(7):4304–4314

    Article  CAS  PubMed  Google Scholar 

  101. Li WC, Yao SP, Li HR, Meng ZD, Sun XR (2021) Curcumin promotes functional recovery and inhibits neuronal apoptosis after spinal cord injury through the modulation of autophagy. J Spinal Cord Med 44(1):37–45

    Article  PubMed  Google Scholar 

  102. Xu Y, Hu XL, Li FD, Zhang HJ, Lou JS, Wang XY, Hui Wang H, Yin LY et al (2021) GDF-11 protects the traumatically injured spinal cord by suppressing pyroptosis and necroptosis via TFE3-mediated autophagy augmentation. Oxid Med Cell Longev 2021:8186877

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yin J, Yin ZY, Wang B, Zhu C, Sun C, Liu XH, Gong G (2019) Angiopoietin-1 protects spinal cord ischemia and reperfusion injury by inhibiting autophagy in rats. Neurochem Res 44(12):2746–2754

    Article  CAS  PubMed  Google Scholar 

  104. Zhu SP, Ying YB, Ye L, Ying WY, Ye JH, Wu QJ, Min Chen M, Hui Zhu H et al (2021) Systemic administration of fibroblast growth factor 21 improves the recovery of spinal cord injury (SCI) in rats and attenuates SCI-induced autophagy. Front Pharmacol 11:628369

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zheng G, Zhan Y, Wang HL, Luo ZC, Zheng FH, Yifei Zhou YF, Wu YS, Wang S et al (2019) Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine 40:643–654

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hu ZX, Xuan LN, Wu TT, Jiang NZ, Liu XJ, Chang JZ, Wang T, Han N et al (2023) Taxifolin attenuates neuroinflammation and microglial pyroptosis via the PI3K/Akt signaling pathway after spinal cord injury. Int Immunopharmacol 114:109616

    Article  CAS  PubMed  Google Scholar 

  107. Jiang W, He F, Ding GM, Wu JS (2023) Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neurosci Ther 29(10):2843–2856.

  108. Li XF, Yu ZY, Zong WF, Chen P, Li J, Wang MH, Ding FF, Xie MJ et al (2020) Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation 17(1):263

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jiang W, He F, Ding GM, Wu JS (2022) Topotecan reduces neuron death after spinal cord injury by suppressing caspase-1-dependent pyroptosis. Mol Neurobiol 59(10):6033–6048

    Article  CAS  PubMed  Google Scholar 

  110. Zhou Z, Li C, Bao TY, Zhao X, Xiong W, Luo CY, Yin GY, Fan J (2022) Exosome-shuttled miR-672-5p from anti-inflammatory microglia repair traumatic spinal cord injury by inhibiting AIM2/ASC/caspase-1 signaling pathway mediated neuronal pyroptosis. J Neurotrauma 39(15–16):1057–1074

    Article  PubMed  Google Scholar 

  111. Yuan YJ, Fan XY, Guo ZP, Zhou ZP, Gao WR (2022) Metformin protects against spinal cord injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Anal Cell Pathol (Amst) 2022:3634908

    PubMed  Google Scholar 

  112. Xu S, Wang J, Jiang JY, Song J, Zhu W, Zhang F, Shao MH, Xu HC et al (2020) TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 11(8):693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zendedel A, Mönnink F, Hassanzadeh G, Zaminy A, Ansar MM, Habib P, Slowik A, Kipp M et al (2018) Estrogen attenuates local inflammasome expression and activation after spinal cord injury. Mol Neurobiol 55(2):1364–1375

    Article  CAS  PubMed  Google Scholar 

  114. Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z et al (2022) Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 17(1):194–202

    Article  CAS  PubMed  Google Scholar 

  115. Degterev A, Huang ZH, Boyce M, Li YQ, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–9

    Article  CAS  PubMed  Google Scholar 

  116. Deng XX, Li SS, Sun FY (2019) Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis 10(4):807–817

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wang Y, Wang H, Tao Y, Zhang S, Wang J, Feng X (2014) Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266:91–101

    Article  CAS  PubMed  Google Scholar 

  118. Sugaya T, Kanno H, Matsuda M, Handa K, Tateda S, Murakami T, Ozawa H, Itoi E (2019) B-RAFV600E inhibitor dabrafenib attenuates RIPK3-mediated necroptosis and promotes functional recovery after spinal cord injury. Cells 8(12):1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Park HH, Park SY, Mah S, Park JH, Hong SS, Hong S, Kim YS (2018) HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Exp Mol Med 50(9):1–15

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sun LM, Wang HY, Wang ZG, He SD, Chen S, Liao DH, Wang L, Yan JC et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–27

    Article  CAS  PubMed  Google Scholar 

  121. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier JM et al (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA 111(42):15072–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tong K, Li SM, Chen GL, Ma C, Liu XZ, Liu SY, Chen NN (2023) Inhibition of neural stem cell necroptosis mediated by RIPK1/MLKL promotes functional recovery after SCI. Mol Neurobiol 60(4):2135–2149

    Article  CAS  PubMed  Google Scholar 

  123. Wang JJ, Chen Y, Chen L, Duan YZ, Kuang XJ, Peng Z, Li CH, Li YH et al (2020) EGCG modulates PKD1 and ferroptosis to promote recovery in ST rats. Transl Neurosci 11(1):173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gong FY, Ge T, Liu J, Xiao J, Wu XC, Wang HH, Zhu YC, Xia DD et al (2022) Trehalose inhibits ferroptosis via NRF2/HO-1 pathway and promotes functional recovery in mice with spinal cord injury. Aging (Albany NY) 14(7):3216–3232

    Article  CAS  PubMed  Google Scholar 

  125. Ge MH, Tian H, Mao L, Li DY, Lin JQ, Hu HS, Huang SC, Zhang CJ et al (2021) Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther 27(9):1023–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pang YL, Liu XJ, Wang X, Shi XL, Ma L, Zhang Y, Zhou TG, Zhao CX et al (2022) Edaravone modulates neuronal GPX4/ACSL4/5-LOX to promote recovery after spinal cord injury. Front Cell Dev Biol 10:849854

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wang ZH, Wu ZW, Xie ZP, Zhou W, Li MH (2022) Metformin attenuates ferroptosis and promotes functional recovery of spinal cord injury. World Neurosurg 167:e929–e939

    Article  PubMed  Google Scholar 

  128. Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY et al (2019) Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res 14(3):532–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fan BY, Pang YL, Li WX, Zhao CX, Zhang Y, Wang X, Ning GZ, Kong XH et al (2021) Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res 16(3):561–566

    Article  CAS  PubMed  Google Scholar 

  130. Kang Y, Zhu R, Li S, Qin KP, Tang H, Shan WS, Yin ZS (2023) Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury. Neural Regen Res 18(4):881–888

    Article  CAS  PubMed  Google Scholar 

  131. Shao CL, Chen Y, Yang TY, Zhao HB, Li DZ (2022) Mesenchymal stem cell derived exosomes suppress neuronal cell ferroptosis via lncGm36569/miR-5627-5p/FSP1 axis in acute spinal cord injury. Stem Cell Rev Rep 18(3):1127–1142

    Article  CAS  PubMed  Google Scholar 

  132. Ying YB, Huang ZY, Tu YR, Wu QJ, Li ZY, Zhang YF, Yu HL, Zeng AN et al (2022) A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis. Bioact Mater 22:274–290

    PubMed  PubMed Central  Google Scholar 

  133. Zhou GJ, Liu DN, Huang XR, Wu Q, Feng WB, Zeng YH, Liu HY, Yu J et al (2023) High-frequency repetitive transcranial magnetic stimulation protects against cerebral ischemia/reperfusion injury in rats: Involving the mitigation of ferroptosis and inflammation. Brain Behav 13(5):e2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen LY, Min JX, Wang FD (2022) Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 7(1):378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tarnacka B, Jopowicz A, Maślińska M (2021) Copper, iron, and manganese toxicity in neuropsychiatric conditions. Int J Mol Sci 22(15):7820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Seelig J, Heller RA, Hackler J, Haubruck P, Moghaddam A, Biglari B, Schomburg L (2020) Selenium and copper status - potential signposts for neurological remission after traumatic spinal cord injury. J Trace Elem Med Biol 57:126415

    Article  CAS  PubMed  Google Scholar 

  137. Anwen Shao AW, Sheng TuS, Jianan Lu JN, Jianmin Zhang JM (2019) Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther 10(1):238

    Article  PubMed  PubMed Central  Google Scholar 

  138. Feng J, Zhang YF, Zhu ZH, Gu CY, Waqas A, Chen LK (2021) Emerging exosomes and exosomal MiRNAs in spinal cord injury. Front Cell Dev Biol 9:703989

    Article  PubMed  PubMed Central  Google Scholar 

  139. Michael G, Fehlings MG, Wilson JR, Tetreault LA, Aarabi B, Anderson P et al (2017) A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate. Global Spine J 7(3 Suppl):203S-211S

    Google Scholar 

  140. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135:1224–1236

    Article  PubMed  Google Scholar 

  141. Kramer JLK, Curt A (2012) When is the time right for a phase III clinical study in spinal cord injury (P = 0.05)? Brain 135(Pt 11): e220. author reply e221

  142. Casha S, Rice T, Stirling DP, Silva C, Gnanapavan S, Gnanapavan S, Giovannoni G, Hurlbert R et al (2018) Cerebrospinal fluid biomarkers in human spinal cord injury from a phase II minocycline trial. J Neurotrauma 35(16):1918–1928

    Article  PubMed  Google Scholar 

  143. Koda M, Hanaoka H, Fujii Y, Hanawa M, Kawasaki Y (2021) Randomized trial of granulocyte colony-stimulating factor for spinal cord injury. Brain 144(3):789–799

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nagoshi N, Nakashima H, Fehlings MG (2015) Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules 20:7775–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fehlings MG, Nakashima H, Nagoshi N, Chow DS, Grossman RG, Kopjar B (2016) Rationale, design and critical end points for the riluzole in acute spinal cord injury study (RISCIS): a randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord 54:8–15

    Article  CAS  PubMed  Google Scholar 

  146. Chen YM, Wang BL, Zhao H (2018) Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways. Exp Ther Med 15:4987–4994

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by a grant funded by the National Natural Science Foundation of China (Youth Program), No. 81101462; the Natural Science Foundation of Liaoning Province, Nos. 201602875 and 2019-KF-01-06; and the National Key Research and Development Program (Funded Projects), Nos. 2020YFC2005700 and 2020YFC2007600 (all to LXZ).

Author information

Authors and Affiliations

Authors

Contributions

Qifeng Song contributed to the study conception and design. Visualization was performed by Qifeng Song, Sun Shi, and Qian Cui. Provision of study materials was performed by Yashi Wang and Yin Yuan. Lixin Zhang was responsible for the supervision and funding acquisition. The first draft of the manuscript was written by Qifeng Song, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lixin Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Cui, Q., Sun, S. et al. Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04188-3

Keywords

Navigation