Skip to main content

Advertisement

Log in

Effect of Long-Term Exposure to Aluminum on the Acetylcholinesterase Activity in the Central Nervous System and Erythrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Aluminum (Al), a neurotoxic agent, has been associated with Alzheimer’s disease (AD), which is characterized by cholinergic dysfunction in the central nervous system. In this study, we evaluated the effect of long-term exposure to aluminum on acetylcholinesterase (AChE) activity in the central nervous system in different brain regions, in synaptosomes of the cerebral cortex and in erythrocytes. The animals were loaded by gavage with AlCl3 50 mg/kg/day, 5 days per week, totalizing 60 administrations. Rats were divided into four groups: (1) control (C); (2) 50 mg/kg of citrate solution (Ci); (3) 50 mg/kg of Al plus citrate (Al + Ci), and (4) 50 mg/kg of Al (Al). AChE activity in striatum was increased by 15% for Ci, 19% for Al + Ci and 30% for Al, when compared to control (P < 0.05). The activity in hypothalamus increased 23% for Ci, 26% for Al + Ci and 28% for Al, when compared to control (P < 0.05). AChE activity in cerebellum, hippocampus and cerebral cortex was decreased by 11%, 23% and 21% respectively, for Al, when compared to the respective controls (P < 0.05). AChE activity in synaptosomes was increased by 14% for Al, when compared to control (P < 0.05). Erythrocyte AChE activity was increased by 17% for Al + Ci and 11% for Al, when compared to control (P < 0.05). These results indicate that Al affects at the same way AChE activity in the central nervous system and erythrocyte. AChE activity in erythrocytes may be considered a marker of easy access of the central cholinergic status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier, New York

    Google Scholar 

  2. Kaizer RR, Maldonado PA, Spanevello RM et al (2007) The effect of aluminium on NTPDase and 5′-nucleotidase activities from rat synaptosomes and platelets. Int J Dev Neurosci 25:381–386

    Article  PubMed  CAS  Google Scholar 

  3. Saiyed SM, Yokel RA (2005) Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Additiv Contam 22:234–244

    Article  CAS  Google Scholar 

  4. Yokel RA (2000) The toxicology of aluminum in the brain: a review. Neurotoxicology 21:813–828

    PubMed  CAS  Google Scholar 

  5. Exley C (2001) Why is research into aluminum and life important? In: Exley C (ed) Aluminum and Alzheimer’s disease. Elsevier, Amsterdam, pp v–viii

    Chapter  Google Scholar 

  6. Xu N, Majidi V, Markesbery WR (1992) Brain aluminium in Alzheimer’s disease using an improved GFAAS method. Neurotoxicology 13:735–743

    PubMed  CAS  Google Scholar 

  7. Candy JM, Klinowski J, Perry RH et al (1986) Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet 1:354–357

    Article  PubMed  CAS  Google Scholar 

  8. Geula C, Mesulam MM (1999) Cholinergic systems in Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer Disease. Lippincott Williams & Wilkins, Philadelphia, pp 269–292

    Google Scholar 

  9. Zatta P, Ibn-Lkhayat-Idrissi M, Zambenedetti P et al (2002) In vivo and in vitro effects of aluminum on the activity of mouse brain acetylcholinesterase. Brain Res Bull 59:41–45

    Article  PubMed  CAS  Google Scholar 

  10. Kaizer RR, Corrêa MC, Spanevello RM et al (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  PubMed  CAS  Google Scholar 

  11. Grisaru D, Sternfeld M, Eldor A et al (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686

    Article  PubMed  CAS  Google Scholar 

  12. Ahmed M, Rocha JBT, Corrêa M et al (2006) Inhibition of two different cholinesterases by tacrine. Chem Biol Interact 162:165–171

    Article  PubMed  CAS  Google Scholar 

  13. Kaizer RR, Silva AC, Morsch VM et al (2004) Diet-induced changes in AChE activity after long-term exposure. Neurochem Res 29:2251–2255

    Article  PubMed  CAS  Google Scholar 

  14. Gulya K, Rakonczay Z, Kasa P (1990) Cholinotoxic effects of aluminium in rat brain. J Neurochem 54:1020–1026

    Article  PubMed  CAS  Google Scholar 

  15. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:101–115

    Article  PubMed  CAS  Google Scholar 

  16. Mesulam MM, Moran MA (1987) Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease. Ann Neurol 22:223–228

    Article  PubMed  CAS  Google Scholar 

  17. Rakonczay Z, Horváth Z, Juhász A et al (2005) Peripheral cholinergic disturbances in Alzheimer’s disease. Chem Biol Interact 157–158:233–238

    Article  PubMed  Google Scholar 

  18. Mazzanti CM, Spanevello RM, Pereira LB et al (2006) Acetylcholinesterase activity in rats experimentally demyelinated with ethidium bromide and treated with interferon beta. Neurochem Res 31:1027–1034

    Article  PubMed  CAS  Google Scholar 

  19. Mazzanti CM, Spanevello RM, Obregon A et al (2006) Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. Chem Biol Interact 25:121–127

    Article  Google Scholar 

  20. Milatovic D, Dettbarn WD (1996) Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat. Toxicol Appl Pharmacol 136:20–28

    Article  PubMed  CAS  Google Scholar 

  21. Missel JR, Schetinger MR, Gioda CR et al (2005) Chelating effect of novel pyrimidines in a model of aluminium intoxication. J Inorg Biochem 99:1853–1857

    Article  PubMed  CAS  Google Scholar 

  22. Schetinger MRC, Bonan CD, Morsch VM et al (1999) Effects of aluminium sulfate on delta-aminolevulinate dehydratase from kidney, brain, and liver of adult mice. Braz J Med Biol Res 32:761–766

    Article  PubMed  CAS  Google Scholar 

  23. Exley C (2004) The pro-oxidant activity of aluminium. Free Radic Biol Med 36:380–387

    Article  PubMed  CAS  Google Scholar 

  24. Bohrer D, Dessuy MB, Kaizer R, Nascimento PC, Schetinger MRC, Morsch VM, Carvalho LM, Garcia SC (2008) Tissue digestion for aluminum determination in experimental animal studies. Anal. Biochem. In press.

  25. Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isosmotic gradient material (Percoll). J Neurochem 43:1114–1123

    Article  PubMed  CAS  Google Scholar 

  26. Ellman GL, Courtney DK, Andres V et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  27. Rocha JBT, Emmanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  28. Worek F, Mast U, Kiderlen D et al (1999) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288:73–90

    Article  PubMed  CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:218–254

    Article  Google Scholar 

  30. Yates CM, Simpson J, Russell D et al (1980) Cholinergic enzymes in neurofibrillary degeneration produced by aluminium. Brain Res 197:269–274

    Article  PubMed  CAS  Google Scholar 

  31. Beauchemin D, Kisilevsky R (1998) A method based on ICP-MS for the analysis of Alzheimer’s amyloid plaques. Anal Chem 70:1026–1029

    Article  PubMed  CAS  Google Scholar 

  32. Roberts NB, Clough A, Bellia JP et al (1998) Increased absorption of aluminium from a normal dietary intake in dementia. J Inorg Biochem 69:171–176

    Article  PubMed  CAS  Google Scholar 

  33. Schönholzer KW, Sutton RAL, Walker VR et al (1997) Intestinal absorption of trace amounts of aluminium in rats studied with 26aluminium and accelerator mass spectrometry. Clin Sci 92:379–383

    PubMed  Google Scholar 

  34. Powell JJ, Thompson RPH (1993) The chemistry of aluminium in the gastrointestinal lumen and its uptake and absorption. Proc Nutr Soc 52:241–253

    Article  PubMed  CAS  Google Scholar 

  35. Greger JL, Chang MM, MacNeil GG (1994) Tissue turnover of aluminum and Ga–67, effect of iron status. Proc Soc Exper Biol Med 207:89–96

    CAS  Google Scholar 

  36. Banks WA, Kastin AJ (1989) Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier. Neurosci Biobehav Rev 13:47–53

    Article  PubMed  CAS  Google Scholar 

  37. van Rensburg SJ, Potocnick CV, Taljaard JJF (1995) In: Zatta P, Nicolini M (eds) Nonneuronal cells in AD, World Scientific, Singapore, pp 25–30

  38. Silva VS, Cordeiro M, Matos MJ et al (2002) Aluminum accumulation and membrane fluidity alteration in synaptosomes isolated from rat brain cortex following aluminum ingestion: effect of cholesterol. Neurosci Res 44:181–193

    Article  PubMed  CAS  Google Scholar 

  39. Swegert CV, Dave KR, Katyare SS (1999) Effect of aluminium-induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain and heart mitochondria. Mech Ageing Dev 112:27–42

    Article  PubMed  CAS  Google Scholar 

  40. Massoulié J, Pezzementi L, Bon S et al (1993) The molecular and cellular biology of cholinesterase. Prog Neurobiol 41:31–91

    Article  PubMed  Google Scholar 

  41. Atack JR, Perry EK, Bonhan JR et al (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 40:199–204

    Article  PubMed  CAS  Google Scholar 

  42. Julka D, Gill KD (1996) Altered calcium homeostasis: a possible mechanism of aluminium-induced neurotoxicity. Biochim Biophys Acta 1315:47–54

    PubMed  Google Scholar 

  43. Nicholls DM, Speares GM, Miller ACM et al (1991) Brain protein synthesis in rabbits following low level aluminium exposure. Int J Biochem 23:737–741

    Article  PubMed  CAS  Google Scholar 

  44. Kumar S (1998) Biphasic effect of aluminium on cholinergic enzyme of rat brain. Neurosc Lett 248:121–123

    Article  CAS  Google Scholar 

  45. von Benhardi R, Ramírez G, De Ferrari GV et al (2003) Acetylcholinesterase induces the expression of the β-amyloid precursors protein in glia and activates glial cells in culture. Neurobiol Dis 14:447–457

    Article  Google Scholar 

  46. Campbell A, Kumar A, La Rosa FG et al (2000) Aluminum increases levels of beta-amyloid and ubiquitin in neuroblastoma but not in glioma cells. Proc Soc Exp Biol Med 223:397–402

    Article  PubMed  CAS  Google Scholar 

  47. Exley C, Korchazhkina OV (2001) Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (AlATP). J Inorg Biochem 84:215–224

    Article  PubMed  CAS  Google Scholar 

  48. Silva VS, Gonçalves PP (2003) The inhibitory effect of aluminium on the (Na+/K+) ATPase activity of rat brain cortex synaptosomes. J Inorg Biochem 97:143–150

    Article  PubMed  CAS  Google Scholar 

  49. Wright CI, Geula C, Mesulam MM (1993) Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 34:373–384

    Article  PubMed  CAS  Google Scholar 

  50. Simpson J, Yates CM, Whyler DK et al (1985) Biochemical studies on rabbits with aluminium induced neurofilament accumulation. Neurochem Res 10:229–238

    Article  PubMed  CAS  Google Scholar 

  51. De Ferrari GV, Canales MA, Shin I et al (2001) A structural motif of acetylcholinesterase that promotes amyloid-β-peptide fibril formation. Biochemistry 40:10447–10457

    Article  PubMed  Google Scholar 

  52. Bartoli M, Bertucci C, Cavrini V et al (2003) Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 65:407–416

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by CNPq, FAPERGS, CAPES, Federal University of Santa Maria, and FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Chitolina Schetinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaizer, R.R., Corrêa, M.C., Gris, L.R.S. et al. Effect of Long-Term Exposure to Aluminum on the Acetylcholinesterase Activity in the Central Nervous System and Erythrocytes. Neurochem Res 33, 2294–2301 (2008). https://doi.org/10.1007/s11064-008-9725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9725-6

Keywords

Navigation