Skip to main content

Advertisement

Log in

Neurosteroid Biosynthesis Regulates Sexually Dimorphic Fear and Aggressive Behavior in Mice

  • Review Article
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The neurosteroid allopregnanolone is a potent positive allosteric modulator of GABA action at GABAA receptors. Allopregnanolone is synthesized in the brain from progesterone by the sequential action of 5α-reductase type I (5α-RI) and 3α-hydroxysteroid dehydrogenase (3α-HSD). 5α-RI and 3α-HSD are co-expressed in cortical, hippocampal, and olfactory bulb glutamatergic neurons and in output neurons of the amygdala, thalamus, cerebellum, and striatum. Neither 5α-RI nor 3α-HSD mRNAs is expressed in glial cells or in cortical or hippocampal GABAergic interneurons. It is likely that allopregnanolone synthesized in principal output neurons locally modulates GABAA receptor function by reaching GABAA receptor intracellular sites through lateral membrane diffusion.

This review will focus on the behavioral effects of allopregnanolone on mouse models that are related to a sexually dimorphic regulation of brain allopregnanolone biosynthesis. Animal models of psychiatric disorders, including socially isolated male mice or mice that receive a long-term treatment with anabolic androgenic steroids (AAS), show abnormal behaviors such as altered fear responses and aggression. In these animal models, the cortico-limbic mRNA expression of 5α-RI is regulated in a sexually dimorphic manner. Hence, in selected glutamatergic pyramidal neurons of the cortex, CA3, and basolateral amygdala and in granular cells of the dentate gyrus, mRNA expression of 5α-RI is decreased, which results in a downregulation of allopregnanolone content. In contrast, 5α-RI mRNA expression fails to change in the striatum medium spiny neurons and in the reticular thalamic nucleus neurons, which are GABAergic.

By manipulating allopregnanolone levels in glutamatergic cortico-limbic neurons in opposite directions to improve [using the potent selective brain steroidogenic stimulant (SBSS) S-norfluoxetine] or induce (using the potent 5α-RI inhibitor SKF 105,111) behavioral deficits, respectively, we have established the fundamental role of cortico-limbic allopregnanolone levels in the sexually dimorphic regulation of aggression and fear. By selectively targeting allopregnanolone downregulation in glutamatergic cortico-limbic neurons, i.e., by improving the response of GABAA receptors to GABA, new therapeutics would offer appropriate and safe management of psychiatric conditions, including impulsive aggression, irritability, irrational fear, anxiety, posttraumatic stress disorders, and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tardiff K (2000) Epidemiology of violence and mental illness. Epidemiol Psychiatr Soc 9:227–233

    CAS  Google Scholar 

  2. Morris JA, Jordan CL, Breedlove SM (2004) Sexual differentiation of the vertebrate nervous system. Nature Neurosci 7:1034–1039

    Article  PubMed  CAS  Google Scholar 

  3. Shah NM, Breedlove M (2007) Behavioural neurobiology females can also be from Mars. Nature 448:999–1000

    Article  PubMed  CAS  Google Scholar 

  4. Hershberger SL, Segal NL (2004) The cognitive, behavioral, and personality profiles of a male monozygotic triplet set discordant for sexual orientation. Arch Sex Behav 33:497–514

    Article  PubMed  Google Scholar 

  5. Cohen-Bendahan CCC, Buitelaar JK, van Goozen SHM, Cohen-Kettenis PT (2004) Prenatal exposure to testosterone and functional cerebral lateralization: a study in same-sex and opposite-sex twin girls. Psychoneuroendrocrinology 29:911–916

    Article  CAS  Google Scholar 

  6. Cohen-Bendahan CCC, Buitelaar JK, van Goozen SHM, Orlebeke JF, Cohen-Kettenis PT (2005) Is there an effect of prenatal testosterone on aggression and other behavioral traits? A study comparing same-sex and opposite-sex twin girls. Horm Behav 47:230–237

    Article  PubMed  CAS  Google Scholar 

  7. Penatti CAA, Porter DM, Jones BL, Henderson LP (2005) Sex-specific effects of chronic anabolic androgenic steroid treatment on GABAA receptor expression and function in adolescent mice. Neuroscience 135:533–543

    Article  PubMed  CAS  Google Scholar 

  8. Carlson PJ, Singh JB, Zarate CA Jr, Drevets WC, Manji HK (2006) Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx: J Am Soc Exp NeuroTher 3:22–41

    CAS  Google Scholar 

  9. Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nature Rev Neurosci 8:536–546

    Article  CAS  Google Scholar 

  10. Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662

    Article  PubMed  CAS  Google Scholar 

  11. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature 7:818–827

    CAS  Google Scholar 

  12. Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274

    Article  PubMed  CAS  Google Scholar 

  13. Price JL (2007) Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann NY Acad Sci 121:54–71

    Article  Google Scholar 

  14. Price JL, Carmichael ST, Drevets WC (1996) Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res 107:523–536

    Article  PubMed  CAS  Google Scholar 

  15. Drevets W (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11:240–249

    Article  PubMed  CAS  Google Scholar 

  16. Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10:1116–1124

    Article  PubMed  CAS  Google Scholar 

  17. Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48:813–829

    Article  PubMed  CAS  Google Scholar 

  18. Agis-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci USA 103:14602–14607

    Article  PubMed  CAS  Google Scholar 

  19. Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci USA 100:2035–2040

    Article  PubMed  CAS  Google Scholar 

  20. Pinna G, Costa E, Guidotti A (2004) Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci USA 101:6222–6225

    Article  PubMed  CAS  Google Scholar 

  21. Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl) 186:362–372

    Article  CAS  Google Scholar 

  22. Pibiri F, Nelson M, Costa E, Guidotti A, Pinna G (2008) Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: a model relevant for posttraumatic stress disorder. Proc Natl Acad Sci USA 105:5567–5572

    Article  PubMed  CAS  Google Scholar 

  23. Baulieu EE (1981) Steroid hormones in the brain: several mechanisms. In: Fuxe K, Gustafson JA, Wettenberg L (eds) Steroid hormone regulation of the brain. Pergamon, Elmsford, pp 3–14

    Google Scholar 

  24. Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol Rev 37:395–403

    Article  CAS  Google Scholar 

  25. Pinna G, Uzunova V, Matsumoto K, Puia G, Mienville J-M, Costa E, Guidotti A (2000) Brain allopregnanolone regulates the potency of the GABAA receptor agonist muscimol. Neuropharmacology 39:440–448

    Article  PubMed  CAS  Google Scholar 

  26. Puia G, Mienville J-M, Matsumoto K, Takahata H, Watanabe H, Costa E, Guidotti A (2003) On the putative physiological role of allopregnanolone on GABAA receptor function. Neuropharmacology 44:49–55

    Article  PubMed  CAS  Google Scholar 

  27. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci 6:565–575

    Article  PubMed  CAS  Google Scholar 

  28. Dong E, Matsumoto K, Uzunova V, Sugaya I, Costa E, Guidotti A (2001) Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci USA 98:2849–2854

    Article  PubMed  CAS  Google Scholar 

  29. Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5α-dihydroprogesterone in psychiatric disorders. Brain Res Rev 37:110–115

    Article  PubMed  CAS  Google Scholar 

  30. Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4:759–765

    Article  PubMed  CAS  Google Scholar 

  31. Herd MB, Belelli D, Lambert JJ (2007) Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacol Ther 116:20–34

    Article  PubMed  CAS  Google Scholar 

  32. Cheney DL, Uzunov D, Costa E, Guidotti A (1995) Gas chromatographic-mass fragmentographic quantitation of 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) and its precursors in blood and brain of adrenalectomized and castrated rats. J Neurosci 15:4641–4650

    PubMed  CAS  Google Scholar 

  33. Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci USA 93:12599–12604

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto K, Pinna G, Puia G, Guidotti A, Costa E (2005) Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress 8:85–93

    Article  PubMed  CAS  Google Scholar 

  35. Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31

    Article  PubMed  Google Scholar 

  36. Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005) Neurosteroid access to the GABAA receptor. J Neurosci 25:11605–11613

    Article  PubMed  CAS  Google Scholar 

  37. Li P, Shu HJ, Wang C, Mennerick S, Zorumski CF, Covey DF, Steinbach JH, Akk G (2007) Neurosteroid migration to intracellular compartments reduces steroid concentration in the membrane and diminishes GABAA receptor potentiation. J Physiol 584:789–800

    Article  PubMed  CAS  Google Scholar 

  38. Matsumoto K, Uzunova V, Pinna G, Taki K, Uzunov DP, Watanabe H, Mienvielle J-M, Guidotti A, Costa E (1999) Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38:955–963

    Article  PubMed  CAS  Google Scholar 

  39. Rasmusson AM, Pinna G, Paliwal P, Weisman D, Gottshalk C, Charney D, Krystal J, Guidotti A (2006) Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry 60:704–713

    Article  PubMed  CAS  Google Scholar 

  40. Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA 95:3239–3244

    Article  PubMed  CAS  Google Scholar 

  41. Agis-Balboa RC, Pinna G, Kadriu B, Costa E, Guidotti A (2007) Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice. Proc Natl Acad Sci USA 104:18736–18741

    Article  PubMed  CAS  Google Scholar 

  42. Uzunova V, Sampson L, Uzunov DP (2006) Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 186:351–361

    Article  CAS  Google Scholar 

  43. Pinna G, Agis-Balboa RC, Zhubi A, Matsumoto K, Grayson DR, Costa E, Guidotti A (2006) Imidazenil and diazepam increase locomotor activity in mice exposed to protracted social isolation. Proc Natl Acad Sci USA 103:4275–4280

    Article  PubMed  CAS  Google Scholar 

  44. Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci USA 96:13512–13517

    Article  PubMed  CAS  Google Scholar 

  45. Dubrovsky BO (2005) Steroids, neurosctive steroids and neurosteroids in psychopathology. Progr NeuroPsychopharmacol Biol Psychiatry 29:169–192

    Article  CAS  Google Scholar 

  46. Barbaccia ML (2004) Neurosteroidogenesis: relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Crit Rev Neurobiol 16:67–74

    Article  PubMed  CAS  Google Scholar 

  47. van Broekhoven F, Verkes RJ (2003) Neurosteroids in depression: a review. Psychopharmacology (Berl) 165:97–110

    Google Scholar 

  48. Longone P, Rupprecht R, Manieri GA, Bernardi G, Romeo E, Pasini A (2008) The complex roles of neurosteroids in dpression and anxiety disoerders. Neurochem Int 52:596–601

    Article  PubMed  CAS  Google Scholar 

  49. Girdler SS, Klatzkin R (2007) Neurosteroids in the context of stress: Implications for depressive disorders. Pharmacol Ther 1:125–139

    Article  CAS  Google Scholar 

  50. Romeo E, Ströhle A, Spalletta G, di Michele F, Hermann B, Holsboer F, Pasini A, Rupprecht R (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155:910–913

    PubMed  CAS  Google Scholar 

  51. Pinna G, Agis-Balboa RC, Doueiri MS, Guidotti A, Costa E (2004) Brain neurosteroids in gender-related aggression induced by social isolation. Crit Rev Neurobiol 16:75–82

    Article  PubMed  CAS  Google Scholar 

  52. Pinna G, Costa E, Guidotti A (2005) Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behavior. Proc Natl Acad Sci USA 102:2135–2140

    Article  PubMed  CAS  Google Scholar 

  53. Pibiri F, Nelson M, Carboni G, Pinna G (2006) Neurosteroids regulate mouse aggression induced by anabolic androgenic steroids. NeuroReport 17:1537–1541

    Article  PubMed  CAS  Google Scholar 

  54. Pearson H (2004) Hormone therapy: a dangerous elixir? Nature 431:500–501

    Article  PubMed  CAS  Google Scholar 

  55. Pagonis TA, Angelopoulos NV, Koukoulis GN, Hadjichristodoulou CS (2006) Psychiatric side effects induced by supraphysiological doses of combinations of anabolic steroids correlate to the severity of abuse. Eur Psychiatry 21:551–562

    Article  PubMed  Google Scholar 

  56. Snyder PJ, Brunton LL, Lazo JS, Parker KL (2005) Androgens. In: The pharmacological basis of therapeutics, 11th edn. Chap. 58, pp 1523–1586

  57. National Institute of Drug Abuse (2006) NIDA research report series: steroid abuse and addiction. National Clearinghouse on Alcohol and Drug Information, Rockville. (http://165.112.78.61/ResearchReports/Steroids/Anabolicsteroids.html)

  58. National Institute of Drug Abuse (2006) NIDA research report series: anabolic steroid abuse. National Clearinghouse on Alcohol and Drug Information, Rockville. (http://www.nida.nih.gov/ResearchReports/Steroids/anabolicsteroids3.html)

  59. McGinnis MY, Lumia AR, Breuer ME, Possidente B (2002) Physical provocation potentiates aggression in male rats receiving anabolic androgenic steroids. Horm Behav 41:101–110

    Article  PubMed  CAS  Google Scholar 

  60. Pope HG Jr, Brower KJ (2000) In: Sadock BJ, Sadock BA (eds) Comprehensive Textbook of Psychiatry, 7th edn. Lippincott William & Wilkins, Philadelphia, pp 1085–1095

  61. Pope HG, Katz DL (1990) Homicide and near-homicide by anabolic steroid users. J Clin Psychiatry 51:28–31

    PubMed  Google Scholar 

  62. Thiblin I, Lindquist O, Rajs J (2000) Cause and manner of death among users of anabolic androgenic steroids. J Forensic Sci 45:16–23

    PubMed  CAS  Google Scholar 

  63. Peterson A, Garle M, Holmgren P, Druid H, Krantz P, Thiblin I (2006) Toxicological findings and manner of death in autopsied users of anabolic androgenic steroids. Drug Alcohol Depend 81:241–249

    Article  CAS  Google Scholar 

  64. Eisenberg E, Gordan GS (1950) The levator ani muscle of the rat as an index of myotrophic activity of steroidal hormones. J Pharmacol Exp Ther 99:38–44

    PubMed  CAS  Google Scholar 

  65. Clark AS, Henderson LP (2003) Behavioral and physiological responses to anabolic-androgenic steroids. Neurosci Biobehav Rev 27:413–436

    Article  PubMed  CAS  Google Scholar 

  66. Clark AS, Costine BA, Jones BL, Kelton-Rehkopf MC, Meerts SH, Nutbrown-Greene LL, Penatti CA, Porter DM, Yang P, Henderson LP (2006) Sex- and age-specific effects of anabolic androgenic steroids on reproductive behaviors and on GABAergic transmission in neuroendocrine control regions. Brain Res 1126:122–138

    Article  PubMed  CAS  Google Scholar 

  67. Henderson LP, Penatti CA, Jones BL, Yang P, Clark AS (2006) Anabolic androgenic steroids and forebrain GABAergic transmission. Neuroscience 138:793–799

    Article  PubMed  CAS  Google Scholar 

  68. Matsumoto K, Puia G, Dong E, Pinna G (2007) GABAA receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders. Stress 10:3–12

    Article  PubMed  CAS  Google Scholar 

  69. McIntyre KL, Porter DM, Henderson LP (2002) Anabolic androgenic steroids induce age-, sex-, and dose-dependent changes in GABAA receptor subunit mRNAs in the mouse forebrain. Neuropharmacology 43:634–645

    Article  PubMed  CAS  Google Scholar 

  70. Pinna G, Agis-Balboa RC, Nelson M, Pibiri F (2007) Anabolic androgenic steroids (AAS) elicit male mouse aggression by selectively decreasing cortico-limbic allopregnanolone (allopregnanolone) content. Society for Neuroscience abstract 729.11/OO24

  71. Holmes A, Murphy DL, Crawley JN (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161:160–167

    Article  PubMed  CAS  Google Scholar 

  72. Blanchard RJ, Blanchard DC (1969) Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 68:129–135

    Article  PubMed  CAS  Google Scholar 

  73. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  PubMed  CAS  Google Scholar 

  74. Corcoran KA, Desmond TJ, Frey KA, Maren S (2005) Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 25:8978–8987

    Article  PubMed  CAS  Google Scholar 

  75. Barad M, Gean PW, Lutz B (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60:322–328

    Article  PubMed  Google Scholar 

  76. Muller J, Corodimas KP, Fridel Z, LeDoux JE (1997) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci 111:683–691

    Article  PubMed  CAS  Google Scholar 

  77. Goldstein LE, Rasmusson AM, Bunney BS, Roth RH (1996) Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci 16:4787–4798

    PubMed  CAS  Google Scholar 

  78. Helmstetter FJ, Bellgowan PS (1994) Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behav Neurosci 108:1005–1009

    Article  PubMed  CAS  Google Scholar 

  79. Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60:329–336

    Article  PubMed  Google Scholar 

  80. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    Article  PubMed  CAS  Google Scholar 

  81. Hermans D, Craske MG, Mineka S, Lovibond PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60:361–368

    Article  PubMed  Google Scholar 

  82. Bouton ME, Westbrook RF, Corcoran KA, Maren S (2006) Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry 60:352–360

    Article  PubMed  Google Scholar 

  83. Li S, Murakami Y, Wang M, Maeda K, Matsumoto K (2006) The effects of chronic valproate and diazepam in a mouse model of posttraumatic stress disorder. Pharmacol Biochem Behavior 85:324–331

    Article  CAS  Google Scholar 

  84. Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180–194

    Article  PubMed  CAS  Google Scholar 

  85. Price JL (2003) Comparative aspects of amygdala connectivity. Ann NY Acad Sci 958:50–58

    Google Scholar 

  86. Pitkänen A, Savander M, Nurminen N, Ylinen A (2003) Intrinsic Synaptic Circuitry of the Amygdala. Ann NY Acad Sci 985:34–49

    Article  PubMed  Google Scholar 

  87. Sotres-Bayon F, Bush DE, LeDoux JE (2004) Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learning Memory 11:525–535

    Article  PubMed  Google Scholar 

  88. Morgan MA, Romanski LM, LeDoux JE (1993) Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163:109–113

    Article  PubMed  CAS  Google Scholar 

  89. Martinez RC, Ribeiro de Oliveira A, Brandão ML (2007) Serotonergic mechanisms in the basolateral amygdala differentially regulate the conditioned and unconditioned fear organized in the periaqueductal gray. Eur Neuropsychopharmacol 17:717–724

    Article  PubMed  CAS  Google Scholar 

  90. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  91. Cahill L, Weinberger NM, Roozendaal B, McGaugh JL (1999) Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23:227–228

    Article  PubMed  CAS  Google Scholar 

  92. Matsumoto K, Nomura H, Murakami Y, Taki K, Takahata H, Watanabe H (2003) Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems. Pharm Biochem Behav 75:831–835

    Article  CAS  Google Scholar 

  93. Rosselli CE (1998) The effect of anabolic-androgenic steroids on aromatase activity and androgen receptor binding in the rat preoptic area. Brain Res 792:271–276

    Article  Google Scholar 

  94. Orlando R, Caruso A, Molinaro G, Motolese M, Matrisciano F, Togna G, Melchiorri D, Nicoletti F, Bruno V (2007) Nanomolar concentrations of anabolic-androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures. Brain Res 1165:21–29

    Article  PubMed  CAS  Google Scholar 

  95. Stürenburg HJ, Fries U, Kunze K (1997) Glucocorticoids and anabolic/androgenic steroids inhibit the synthesis of GABAergic steroids in rat cortex. Neuropsychobiology 35:143–146

    Article  PubMed  Google Scholar 

  96. Torres JM, Ortega E (2003) Differential regulation of steroid 5α-reductase isozymes expression by androgens in the adult rat brain. FASEB J 11:1428–1433

    Article  CAS  Google Scholar 

  97. Steers WD (2001) 5α-reductase activity in the prostate. Urology 58:17–24

    Article  PubMed  CAS  Google Scholar 

  98. Torres JM, Ortega E (2003) Precise quantization of 5α-reductase type 1 mRNA by RT-PCR in rat liver and its positive regulation by testosterone and dihydrotestosterone. Biochem Biophys Res Commun 308:469–473

    Article  PubMed  CAS  Google Scholar 

  99. Torres JM, Ruiz E, Orgega E (2003) Development of a quantitative RT-PCR method to study 5alpha-reductase mRNA isozymes in rat prostate in different androgen status. Prostate 6:74–79

    Article  CAS  Google Scholar 

  100. Sommerville EM, Tarttelin MF (1983) Plasma testosterone levels in adult and neonatal female rats bearing testosterone propionate-filled silicone elastomer capsules for varying periods of time. J Endocrinol 98:365–371

    PubMed  CAS  Google Scholar 

  101. Russell DW, Wilson JD (1994) Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem 63:25–61

    PubMed  CAS  Google Scholar 

  102. Faigenbaum AD, Zaichkowshy LD, Gardner DE, Micheli LJ (1998) Anabolic steroid use by male and female middle school students. Pediatrics 101:1–6

    Article  Google Scholar 

  103. Clerico A, Ferdeghini M, Palombo C, Leoncini R, Del Chicca MG, Sardano G, Mariani G (1981) Effect of anabolic treatment on the serum levels of gonadotropins, testosterone, prolactin, thyroid hormones and myoglobin of male athletes under physical training. J Nucl Med Allied Sci 25:79–88

    PubMed  CAS  Google Scholar 

  104. Alén M, Rahkila P, Reinila M, Vihko R (1987) Androgenic-anabolic steroid effects on serum thyroid, pituitary and steroid hormones in athletes. Am J Sports Med 15:357–361

    Article  PubMed  Google Scholar 

  105. Alén M, Reinila M, Vihko R (1985) Response of serum hormones to androgen administration in power athletes. Med Sci Sports Exerc 17:354–359

    PubMed  Google Scholar 

  106. Deyssig R, Weissel M (1993) Ingestion of androgenic–anabolic steroids induces mild thyroidal impairment in male body builders. J Clin Endocrinol Metab 76:1069–1071

    Article  PubMed  CAS  Google Scholar 

  107. Daly RC, Su TP, Schmidt PJ, Pagliaro M, Pickar D, Rubinow DR (2003) Neuroendocrine and behavioral effects of high-dose anabolic steroid administration in male normal volunteers. Psychoneuroendocrinology 28:317–331

    Article  PubMed  CAS  Google Scholar 

  108. Small M, Beastall GH, Semple CG, Cowan RA, Forbes CD (1984) Alteration of hormone levels in normal males given the anabolic steroid stanozolol. Clin Endocrinol 21:49–55

    Article  CAS  Google Scholar 

  109. Ruokonen A, Alén M, Bolton N, Vihko R (1985) Response of serum testosterone and its precursor steroids, SHBG and CBG to anabolic steroid and testosterone self-administration in man. J Steroid Biochem 23:33–38

    CAS  Google Scholar 

  110. Fortunato RS, Marassi MP, Chaves EA, Nascimento JH, Rosenthal D, Carvalho DP (2006) Chronic administration of anabolic androgenic steroid alters murine thyroid function. Med Sci Sports Exerc 38:256–261

    Article  PubMed  CAS  Google Scholar 

  111. Manna PR, Tena-Sempere M, Huhtaniemi IT (1999) Molecular mechanisms of thyroid hormone-stimulated steroidogenesis in mouse leydig tumor cells. J Biol Chem 274:5909–5918

    Article  PubMed  CAS  Google Scholar 

  112. Gupta P, Kar A (1997) Role of testosterone in ameliorating the cadmium induced inhibition of thyroid function in adult male mouse. Bull Environ Contam Toxicol 58:422–428

    Article  PubMed  CAS  Google Scholar 

  113. Arlotto MP, Parkinson A (1989) Identification of cytochrome P450a (P450IIA1) as the principal testosterone 7α-hydroxylase in rat liver microsomes and its regulation by thyroid hormones. Arch Biochem Biophys 270:458–471

    Article  PubMed  CAS  Google Scholar 

  114. Pinna G, Hiedra L, Prengel H, Broedel O, Eravci M, Meinhold H, Baumgartner A (1999) Extraction and quantification of thyroid hormones in selected regions and subcellular fractions of the rat brain. Brain Res Brain Res Protocols 4:19–28

    Article  CAS  Google Scholar 

  115. Pinna G, Brödel O, Visser T, Jeitner A, Grau H, Eravci M, Meinhold H, Baumgartner A (2002) Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 143:1789–1800

    Article  PubMed  CAS  Google Scholar 

  116. Campos-Barros A, Hoell T, Musa A, Sampaolo S, Stoltenburg G, Pinna G, Eravci M, Meinhold H, Baumgartner A (1996) Phenolic and tyrosyl ring iodothyronine deiodination and thyroid hormone concentrations in the human central nervous system. J Clin Endocrinol Metab 81:2179–2185

    Article  PubMed  CAS  Google Scholar 

  117. Pinna G, Meinhold H, Hiedra L, Thoma R, Hoell T, Gräf KJ, Stoltenburg-Didinger G, Eravci M, Prengel H, Brödel O, Finke R, Baumgartner A (1997) Elevated 3, 5-diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors. J Clin Endocrinol Metab 82:1535–1542

    Article  PubMed  CAS  Google Scholar 

  118. Pinna G, Hiedra L, Meinhold H, Eravci M, Prengel H, Brödel O, Gräf KJ, Stoltenburg-Didinger G, Bauer M, Baumgartner A (1998) 3, 3′-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress. J Clin Endocrinol Metab 83:3071–3077

    Article  PubMed  CAS  Google Scholar 

  119. van Doorn J, van der Heide D, Roelfsema F (1984) The contribution of local thyroxine monodeiodination to intracellular 3, 5, 3’-triiodothyronine in several tissues of hyperthyroid rats at isotopic equilibrium. Endocrinology 115:174–182

    Article  PubMed  Google Scholar 

  120. Bauer M, London ED, Rasgon N, Berman SM, Frye MA, Altshuler LL, Mandelkern MA, Bramen J, Voytek B, Woods R, Mazziotta JC, Whybrow PC (2007) Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol Psychiatry 10:456–469

    Article  CAS  Google Scholar 

  121. Pinna G, Broedel O, Eravci M, Stoltenburg-Didinger G, Plueckhan H, Fuxius S, Meinhold H, Baumgartner A (2003) Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol Psychiatry 54:1049–1059

    Article  PubMed  CAS  Google Scholar 

  122. Baumgartner A (2000) Thyroxine and the treatment of affective disorders: an overview of the results of basic and clinical research. Int J neuropsychopharmachol 3:149–165

    Article  CAS  Google Scholar 

  123. Chang WC, Chen BK (2005) Transcription factor Sp1 functions as an anchor protein in gene transcription of human 12(S)-lipoxygenase. Biochem Biophys Res Commun 338:117–121

    Article  PubMed  CAS  Google Scholar 

  124. Chen Y, Kundakovic M, Agis-Balboa RC, Pinna G, Grayson DR (2007) Induction of the reelin promoter by retinoic acid is mediated by Sp1. J Neurochem 103:650–665

    Article  PubMed  CAS  Google Scholar 

  125. Safe S, Kim K (2004) Nuclear receptor-mediated transactivation through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol 77:1–36

    Article  PubMed  CAS  Google Scholar 

  126. Blanchard Y, Seenundun S, Robaire B (2007) The promoter of the rat 5α-reductase type 1 gene is bidirectional and Sp1-dependent. Mol Cell Endocrinol 264:171–183

    Article  PubMed  CAS  Google Scholar 

  127. Tueting P, Pinna G, Costa E (2008) Homozygous and heterozygous reeler mouse mutants. In: Fatemi SH (ed) Reelin Glycoprotein: Structure, Biology and Roles in Health Disease. Springer, pp 291–309

  128. Guidotti A, Ruzicka W, Grayson DR, Veldic M, Pinna G, Davis JM, Costa E (2007) S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. NeuroReport 18:57–60

    Article  PubMed  CAS  Google Scholar 

  129. Costa E, Dong E, Grayson DR, Guidotti A, Ruzicka W, Veldic M (2007) Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2:29–36

    PubMed  Google Scholar 

  130. Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99:17095–17100

    Article  PubMed  CAS  Google Scholar 

  131. Tremolizzo L, Doueiri MS, Dong E, Grayson DR, Davis J, Pinna G, Tueting P, Rodriguez-Menendez V, Costa E, Guidotti A (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57:500–509

    Article  PubMed  CAS  Google Scholar 

  132. Simonini MV, Camargo LM, Dong E, Maloku E, Veldic M, Costa E, Guidotti A (2006) The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 103:1587–1592

    Article  PubMed  CAS  Google Scholar 

  133. Kundakovic M, Chen Y, Costa E, Grayson DR (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71:644–653

    Article  PubMed  CAS  Google Scholar 

  134. Dong E, Guidotti A, Grayson DR, Costa E (2007) Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA 104:4676–4681

    Article  PubMed  CAS  Google Scholar 

  135. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E (2005) In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA 102:2152–2157

    Article  PubMed  CAS  Google Scholar 

  136. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    Article  PubMed  CAS  Google Scholar 

  137. Franklin KBJ, Paxinos G (1997) In: The mouse brain in stereotaxic coordinates. Academic New York

Download references

Acknowledgment

This study was supported by a Campus Research Board Award 2-611185 (to GP). Supported by Regione Autonoma della Sardegna, Italy, "Master and Back" (to F.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziano Pinna.

Additional information

Special issue article in honor of Dr. Ji-Sheng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinna, G., Agis-Balboa, R.C., Pibiri, F. et al. Neurosteroid Biosynthesis Regulates Sexually Dimorphic Fear and Aggressive Behavior in Mice. Neurochem Res 33, 1990–2007 (2008). https://doi.org/10.1007/s11064-008-9718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9718-5

Keywords

Navigation