Skip to main content

Advertisement

Log in

Presence and Characterization of the Dopamine Transporter in Human Resting Lymphocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The paucity of information on the presence of the dopamine transporter (DAT) in blood cells, prompted us to explore it in human resting lymphocytes by means of the binding of 3H-WIN 35,428, a compound which is currently considered the most selective ligand for labelling this protein, and by means of the specific reuptake of 3H-dopamine (3H-DA). Lymphocytes were obtained by 15 healthy subjects. The results showed the presence of a specific and saturable binding of 3H-WIN 35,428, which labelled one site only. A specific 3H-DA reuptake was also measured. The pharmacological characterization of both binding and reuptake was overlapping. These findings would indicate that human resting lymphocytes carry the DAT, whose functions in periphery are still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27(5):270–277

    Article  PubMed  CAS  Google Scholar 

  2. Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73–93

    Article  PubMed  CAS  Google Scholar 

  3. Giros B, el Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295(1–3):149–154

    Article  PubMed  CAS  Google Scholar 

  4. Pristupa ZB, McConkey F, Liu F, Man HY, Lee FJ, Wang YT, Niznik HB (1998) Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. Synapse 30(1):79–87

    Article  PubMed  CAS  Google Scholar 

  5. Little KY, Carroll FI, Cassin BJ (1995) Characterization and localization of [125I]RTI-121 binding sites in human striatum and medial temporal lobe. J Pharmacol Exp Ther 274(3):1473–1483

    PubMed  CAS  Google Scholar 

  6. Boja JW, Carroll FI, Vaughan RA, Kopajtic T, Kuhar MJ (1998) Multiple binding sites for [125I]RTI-121 and other cocaine analogs in rat frontal cerebral cortex. Synapse 30(1):9–17

    Article  PubMed  CAS  Google Scholar 

  7. Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409(1):38–56

    Article  PubMed  CAS  Google Scholar 

  8. Marazziti D, Baroni S, Fabbrini L, Italiani P, Catena M, Dell’Osso B, Betti L, Giannaccini G, Lucacchini A, Cassano GB (2006) Binding of 3H-WIN-35, 428 and 125I-RTI-121 to human platelet membranes. Neurochem Res 31(3):361–365

    Article  PubMed  CAS  Google Scholar 

  9. Frankhauser P, Grimmer Y, Bugert P, Deuschle M, Schmidt M, Schloss P (2006) Characterization of the neuronal dopamine transporter DAT in human blood platelets. Neurosci Lett 399(3):197–201

    Article  PubMed  CAS  Google Scholar 

  10. Lingjaerde O, Kildemo O (1981) Dopamine uptake in platelets: two different low-affinity, saturable mechanisms. Agents Actions 11(4):410–416

    Article  PubMed  CAS  Google Scholar 

  11. Sundram S, Dean B, Copolov DL (1994) The development of a method to measure [3H] dopamine uptake by washed platelets provides no evidence for circulating inhibitors of platelet dopamine uptake in schizophrenia. Biol Psychiatry 36(9):595–600

    Article  PubMed  CAS  Google Scholar 

  12. Lingjaerde O (1995) Dopamine uptake in platelets. Biol Psychiatry 38(6):416–417

    Article  PubMed  CAS  Google Scholar 

  13. Rotman A, Munitz H, Modai I, Tjano S, Wijsenbeek H (1980) A comparative uptake study of serotonin, dopamine, and norepinephrine by platelets of acute schizophrenic patients. Psychiatry Res 3(3):239–246

    Article  PubMed  CAS  Google Scholar 

  14. Rabey JM, Lerner A, Sigal M, Graff E, Oberman Z (1992) [3H]dopamine uptake by platelet storage granules in schizophrenia. Life Sci 50(1):65–72

    Article  PubMed  CAS  Google Scholar 

  15. Dean B, Sundram S, Hill C, Copolov DL (1996) Platelet [3H]dopamine uptake is differentially affected by neuroleptic drug treatment in schizophrenia and schizophreniform disorder. Prog Neuropsychopharmacol Biol Psychiatry 20(1):45–55

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi N, Nagai Y, Ueno S, Saeki Y, Yanigihara T (1992) Human peripheral blood lymphocytes express D5 dopamine receptor gene and transcribe the two pseudo genes. FEBS Lett 314:23–25

    Article  PubMed  CAS  Google Scholar 

  17. Nagai Y, Ueno S, Saeki Y, Soga F, Yanagihara T (1993) Expression of D3 dopamine receptor gene and novel variant transcript generated by alternative splicing in human peripheral blood lymphocytes. Biochem Biophys Res Commun 194:368–374

    Article  PubMed  CAS  Google Scholar 

  18. Vile JM, Strange PG (1995) High-affinity binding sites for neuroleptic drugs in human peripheral blood lymphocytes and their relation to dopamine receptors. Biochem Pharmacol 49:747–753

    Article  PubMed  CAS  Google Scholar 

  19. Bondy B, De Jonge S, Pander S, Primbs J, Ackenheil M (1996) Identification of dopamine D4 mRNA in circulating lymphocytes using nested polymerase chain reaction. J Neuroimmunol 71:139–144

    Article  PubMed  CAS  Google Scholar 

  20. Josefsson E, Bergquist J, Ekman R, Tarkowski A (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 82:73–80

    Google Scholar 

  21. Musso NR, Brenci S, Setti M, Indiveri F, Lotti G (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81:3553–3557

    Article  PubMed  CAS  Google Scholar 

  22. Bergquist J, Silberring J (1998) Identification of catecholamines in the immune system by electrospray ionisation mass spectrometry. Commun Mass Spectrom 12:683–688

    Article  CAS  Google Scholar 

  23. Caronti B, Tanda G, Colosino C, Ruggeri S, Calderaro C, Paladini G, Pontieri FE, Di Chiara G (1999) Reduced dopamine in peripheral blood lymphocytes in Parkinson’s disease. Neuroreport 10:2907–2910

    Article  PubMed  CAS  Google Scholar 

  24. Tsao CW, Lin YS, Cheng JT (1998) Inhibition of immune cell proliferation with haloperidol and relationship of tyrosine hydroxylase expression to immune cell growth. Life Sci 62:335–344

    Article  Google Scholar 

  25. Faraj BA, Olkowski ZL, Jackson RT (1995) A cocaine-sensitive active dopamine transport in human lymphocytes. Biochem Pharmacol 50:1007–1014

    Article  PubMed  CAS  Google Scholar 

  26. Krieger K, Klimke A, Henning U (1998) Active 3H-dopamine uptake displayed by native lymphocyte suspension is mainly due to contaminating platelets. Pharmacopsychiatry 31:193–198

    Article  PubMed  CAS  Google Scholar 

  27. Amenta F, Bronzetti E, Cantalamessa F, El-Assouad D, Felici L, Ricci A, Tayebati SK (2001) Identification of dopamine plasma membrane and vesicular transporters in human peripheral blood lymphocytes. J Neuroimmunol 117(1–2):133–142

    Article  PubMed  CAS  Google Scholar 

  28. Caronti B, Antonini G, Calderaro C, Ruggieri S, Palladini G, Pontieri FE, Colosimo C (2001) Dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson’s disease. J Neural Transm 108(7):803–807

    Article  PubMed  CAS  Google Scholar 

  29. Mill J, Asherson P, Browes C, D’Souza U, Craig I (2002) Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 114(8):975–979

    Article  PubMed  Google Scholar 

  30. Marazziti D, Rossi A, Giannaccini G, Baroni S, Lucacchini A, Cassano GB (1998) Presence and characterization of the serotonin transporter in human resting lymphocytes. Neuropsychopharmacology 19(2):154–159

    Article  PubMed  CAS  Google Scholar 

  31. McPherson GA (1985) Kinetic, EBDA, LIGAND, Lowry: a collection of radioligand binding analysis programs. Cambridge, Biosoft

  32. Carroll FI, Kotian P, Dehghani A, Gray JL, Kuzemko MA, Parham KA, Abraham P, Lewin AH, Boja JW, Kuhar MJ (1995) Cocaine and 3 beta-(4′-substituted phenyl)tropane-2 beta-carboxylic acid ester and amide analogues. New high-affinity and selective compounds for the dopamine transporter. J Med Chem 38(2):379–388

    Article  PubMed  CAS  Google Scholar 

  33. Ukairo OT, Bondi CD, Newman AH, Kulkarni SS, Kozikowski AP, Pan S, Surratt CK (2005) Recognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a function of a DAT transmembrane 1 aspartic acid residue. J Pharmacol Exp Ther 314(2):575–583

    Article  PubMed  CAS  Google Scholar 

  34. Buttarelli FR, Circella A, Pellicano C, Pontieri FE (2006) Dopamine transporter immunoreactivity in peripheral blood mononuclear cells in amyotrophic lateral sclerosis. Eur J Neurol 13(4):416–418

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Marazziti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marazziti, D., Baroni, S., Catena Dell’Osso, M. et al. Presence and Characterization of the Dopamine Transporter in Human Resting Lymphocytes. Neurochem Res 33, 1011–1016 (2008). https://doi.org/10.1007/s11064-007-9541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9541-4

Keywords

Navigation