Skip to main content
Log in

Hyperoxidized Peroxiredoxins and Glyceraldehyde-3-Phosphate Dehydrogenase Immunoreactivity and Protein Levels are Changed in the Gerbil Hippocampal CA1 Region After Transient Forebrain Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress is a major pathogenic event occurring in several brain disorders and is a major cause of brain damage due to ischemia/reperfusion. Thiol proteins are easily oxidized in cells exposed to reactive oxygen species (ROS). In the present study, we investigated transient ischemia-induced chronological changes in hyperoxidized peroxiredoxins (Prx-SO3) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH-SO3) immunoreactivity and protein levels in the gerbil hippocampus induced by 5 min of transient forebrain ischemia. Weak Prx-SO3 immunoreactivity is detected in the hippocampal CA1 region of the sham-operated group. Prx-SO3 immunoreactivity was significantly increased 12 h and 1 day after ischemia/reperfusion, and the immunoreactivity was decreased to the level of the sham-operated group 2 days after ischemia/reperfusion. Prx-SO3 immunoreactivity in the 4 days post-ischemia group was increased again, and the immunoreactivity was expressed in glial components for 5 days after ischemia/reperfusion. GAPDH-SO3 immunoreactivity was highest in the CA1 region 1 day after ischemia/reperfusion, the immunoreactivity was decreased 2 days after ischemia/reperfusion. Four days after ischemia/reperfusion, GAPDH-SO3 immunoreactivity increased again, and the immunoreactivity began to be expressed in glial components from 5 days after ischemia/reperfusion. Prx-SO3 and GAPDH-SO3 protein levels in the ischemic CA1 region were also very high 12 h and 1 day after ischemia/reperfusion and returned to the level of the sham-operated group 3 days after ischemia/reperfusion. Their protein levels were increased again 5 days after ischemia/reperfusion. In conclusion, Prx-SO3 and GAPDH-SO3 immunoreactivity and protein levels in the gerbil hippocampal CA1 region are significantly increased 12 h-24 h after ischemia/reperfusion and their immunoreactivity begins to be expressed in glial components from 4 or 5 days after ischemia/reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  PubMed  CAS  Google Scholar 

  2. Cesaratto L, Vascotto C, D’Ambrosio C et al (2005) Overoxidation of peroxiredoxins as an immediate and sensitive marker of oxidative stress in HepG2 cells and its application to the redox effects induced by ischemia/reperfusion in human liver. Free Radic Res 39:255–268

    Article  PubMed  CAS  Google Scholar 

  3. Guedes RP, Bosco LD, Teixeira CM et al (2006) Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res 31:603–609

    Article  PubMed  CAS  Google Scholar 

  4. Feier G, Jornada LK, Barichello T et al (2006) Long lasting effects of electroconvulsive seizures on brain oxidative parameters. Neurochem Res 31:665–670

    Article  PubMed  CAS  Google Scholar 

  5. Beal MF (1999) Mitochondria, NO and neurodegeneration. Biochem Soc Symp 66:43–54

    PubMed  CAS  Google Scholar 

  6. Sanders SP, Zweier JL, Kuppusamy P et al (1993) Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport. J Clin Invest 91:46–52

    PubMed  CAS  Google Scholar 

  7. Manton KG, Volovik S, Kulminski A (2004) ROS effects on neurodegeneration in Alzheimer’s disease and related disorders: on environmental stresses of ionizing radiation. Curr Alzheimer Res 1:277–293

    Article  PubMed  CAS  Google Scholar 

  8. Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574

    Article  PubMed  CAS  Google Scholar 

  9. Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521–536

    Article  PubMed  CAS  Google Scholar 

  10. Heales SJ, Lam AA, Duncan AJ, Land JM (2004) Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 29:513–519

    Article  PubMed  CAS  Google Scholar 

  11. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  12. Petito CK, Pulsinelli WA (1984) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 4:194–205

    PubMed  CAS  Google Scholar 

  13. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  PubMed  CAS  Google Scholar 

  14. Baty JW, Hampton MB, Winterbourn CC (2005) Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Biochem J 389:785–795

    Article  PubMed  CAS  Google Scholar 

  15. Yang KS, Kang SW, Woo HA et al (2002) Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem 277:38029–38036

    Article  PubMed  CAS  Google Scholar 

  16. Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG (2003) Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid: immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 278:47361–47364

    Article  PubMed  CAS  Google Scholar 

  17. Rabilloud T, Heller M, Gasnier F et al (2002) Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 277:19396–19401

    Article  PubMed  CAS  Google Scholar 

  18. Brodie AE, Reed DJ (1990) Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides. Arch Biochem Biophys 276:212–218

    Article  PubMed  CAS  Google Scholar 

  19. Schuppe-Koistinen I, Moldeus P, Bergman T, Cotgreave IA (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221:1033–1037

    Article  PubMed  CAS  Google Scholar 

  20. Wood ZA, Schroder E, Robin HJ, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  PubMed  CAS  Google Scholar 

  21. Chevallet M, Wagner E, Luche S, van Dorsselaer A, Leize-Wagner E, Rabilloud T (2003) Regeneration of peroxiredoxins during recovery after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress. J Biol Chem 278:37146–37153

    Article  PubMed  CAS  Google Scholar 

  22. Hara MR, Cascio MB, Sawa A (2006) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762:502–509

    PubMed  CAS  Google Scholar 

  23. Schulze H, Schuler A, Stuber D, Dobeli H, Langen H, Huber G (1993) Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the recombinant cytoplasmic domain of Alzheimer’s beta-amyloid precursor protein. J Neurochem 60:1915–1922

    Article  PubMed  CAS  Google Scholar 

  24. Burke JR, Enghild JJ, Martin ME et al (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2:347–350

    Article  PubMed  CAS  Google Scholar 

  25. Koshy B, Matilla T, Burright EN et al (1996) Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet 5:1311–1318

    Article  PubMed  CAS  Google Scholar 

  26. Ramos AJ, Tagliaferro P, López EM, Pecci Saavedra J, Brusco A (2000) Neuroglial interactions in a model of para-chlorophenylalanine induced serotonin depletion. Brain Res 883:1–14

    Article  PubMed  CAS  Google Scholar 

  27. Haba K, Ogawa N, Mizukawa K, Mori A (1991) Time course of changes in lipid peroxidation, pre- and postsynaptic cholinergic indices, NMDA receptor binding and neuronal death in the gerbil hippocampus following transient ischemia. Brain Res 540:116–122

    Article  PubMed  CAS  Google Scholar 

  28. Colbourne F, Sutherland GR, Auer RN (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 19:4200–4210

    PubMed  CAS  Google Scholar 

  29. Dluzniewska J, Beresewicz M, Wojewodzka U, Gajkowska B, Zablocka B (2005) Transient cerebral ischemia induces delayed proapoptotic Bad translocation to mitochondria in CA1 sector of hippocampus. Brain Res Mol Brain Res 133:274–280

    Article  PubMed  CAS  Google Scholar 

  30. Ceballos I, Javoy-Agid F, Delacourte A et al (1991) Neuronal localization of copper-zinc superoxide dismutase protein and mRNA within the human hippocampus from control and Alzheimer’s disease brains. Free Radic Res Commun 12−13:571–580

    Article  PubMed  Google Scholar 

  31. Delacourte A, Defossez A, Ceballos I, Nicole A, Sinet PM (1988) Preferential localization of copper zinc superoxide dismutase in the vulnerable cortical neurons in Alzheimer’s disease. Neurosci Lett 92:247–253

    Article  PubMed  CAS  Google Scholar 

  32. Hwang IK, Yoon DK, Yoo KY et al (2004) Ischemia-related change of ceruloplasmin immunoreactivity in neurons and astrocytes in the gerbil hippocampus and dentate gyrus. Neurochem Int 44:601–607

    Article  PubMed  CAS  Google Scholar 

  33. Hwang IK, Eum WS, Yoo KY et al (2005) Copper chaperone for Cu, Zn-SOD supplement potentiates the Cu, Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus. Free Radic Biol Med 39:392–402

    Article  PubMed  CAS  Google Scholar 

  34. Hwang IK, Yoo KY, Kim DW et al (2006) Ionized calcium-binding adapter molecule 1 immunoreactive cells change in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem Res 31:957–965

    Article  PubMed  CAS  Google Scholar 

  35. Hwang IK, Yoo KY, Kim DW et al (2006) Ischemia-related changes of glial-derived neurotrophic factor and phosphatidylinositol 3-kinase in the hippocampus: their possible correlation in astrocytes. Brain Res 1072:215–223

    Article  PubMed  CAS  Google Scholar 

  36. Buchczyk DP, Briviba K, Hartl FU, Sies H (2000) Responses to peroxynitrite in yeast: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a sensitive intracellular target for nitration and enhancement of chaperone expression and ubiquitination. Biol Chem 381:121–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Suek Han, Seung Uk Lee and Ms. Hyun Sook Kim for their technical help in this study. This study was supported by a grant of the Korean Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A050742).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Ho Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Yoo, KY., Kim, D.W. et al. Hyperoxidized Peroxiredoxins and Glyceraldehyde-3-Phosphate Dehydrogenase Immunoreactivity and Protein Levels are Changed in the Gerbil Hippocampal CA1 Region After Transient Forebrain Ischemia. Neurochem Res 32, 1530–1538 (2007). https://doi.org/10.1007/s11064-007-9345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9345-6

Keywords

Navigation