Skip to main content
Log in

Age-related Oxidative Modifications of Proteins and Lipids in Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidants have been shown to play a major role in ageing and ageing-related neurodegenerative diseases. In the present study, we investigated the effect of ageing on oxidative damage to lipids and proteins in brain homogenate, mitochondria and synaptosomes of adult (6-month-old), old (15-month-old), and senescent (26-month-old) Wistar rats. There was a significant increase in thiobarbituric acid-reactive substances and conjugated dienes in homogenates, which indicate increased lipid peroxidation (LPO). Oxidative modifications of homogenate proteins were demonstrated by a loss of sulfhydryl content, accumulation of dityrosines and formation of protein conjugates with LPO-end products. Increase in protein conjugates with LPO-end products and a decrease in SH groups were observed also in mitochondria and synaptosomes, but dityrosine content was elevated only in synaptosomes. Protein surface hydrophobicity, measured by fluorescent probe 1-anilino-8-naphthalenesulfonate (ANS), was increased only in homogenate. These results suggest that besides mitochondria and synaptosomes other cellular compartments are oxidatively modified during brain ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pérez-Severiano F, Santamaría A, Pedraza-Chaverri J et al (2004) Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity, in striata of mice transgenic for the Huntington’s disease mutation. Neurochem Res 29:729–733

    Article  PubMed  Google Scholar 

  2. Linnane AW, Marzuki S, Ozawa T et al (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancent 1:642–645

    Article  CAS  Google Scholar 

  3. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  4. Chatgilialoglu C, O′Neill P (2001) Free radicals associated with DNA damage. Exp Gerontol 36:1459–1471

    Article  PubMed  Google Scholar 

  5. Ding Q, Markesbery WR, Cecarini V et al (2006) Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res 31:705–710

    Article  PubMed  CAS  Google Scholar 

  6. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York, pp 246–350

    Google Scholar 

  7. Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  8. Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208

    Article  PubMed  CAS  Google Scholar 

  9. Diaz-Ruiz A, Vergara P, Perez-Severiano F et al (2007) Acute alterations of glutamate, glutamine, GABA, and other amino acids after spinal cord contusion in rats. Neurochem Res 32:57–63

    Article  PubMed  CAS  Google Scholar 

  10. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  PubMed  CAS  Google Scholar 

  11. Fu S, Davies J, Dean RT (1998). Molecular aspects of free radical damage to proteins. In: Aruoma OI, Halliwell B (eds) Molecular biology of free radicals in human diseases. OICA International, Santa Lucia, London pp 29–56

  12. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  13. Shacter E (2000) Protein oxidative damage. Methods Enzymol 319:428–436

    PubMed  CAS  Google Scholar 

  14. Davies KJA (1987) Protein damage and degeneration by oxygen radicals. J Biol Chem 262:9895–9901

    PubMed  CAS  Google Scholar 

  15. Stadtman ER (1993) Oxidation of free amino acids and amino acids residues in proteins by radiolysis and by metal-catalyzed reaction. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  16. Head E, Liu J, Hagen TM et al (2002) Oxidative damage increases with age in a canine model of human brain aging. J Neurochem 82:375–381

    Article  PubMed  CAS  Google Scholar 

  17. Cakatay U, Telci A, Kayali R et al (2001) Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol 36:221–229

    Article  PubMed  CAS  Google Scholar 

  18. Davies SM, Poljak A, Duncan MW et al (2001) Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med 31:181–190

    Article  PubMed  CAS  Google Scholar 

  19. Leeuwenburgh C, Rasmussen JE, Hsu FF et al (1997) Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 272:3520–3526

    Article  PubMed  CAS  Google Scholar 

  20. Tian L, Cai Q, Wei H (1998) Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radical Biol Med 24:1477–1484

    Article  CAS  Google Scholar 

  21. Abd El Mohsen MM, Iravani MM, Spencer JP et al (2005) Age-associated changes in protein oxidation and proteasome activities in rat brain: modulation by antioxidants. Biochem Biophys Res Commun 21:386–391

    Article  CAS  Google Scholar 

  22. Dodd PR, Hardy JA, Oakley AE et al (1981) A rapid method for preparing synaptosomes: comparison with alternative procedures. Brain Res 226:107–118

    Article  PubMed  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  24. Dousset N, Ferretti G, Taus M et al (1994) Fluorescence analysis of lipoprotein peroxidation. Methods Enzymol 233:459–469

    Article  PubMed  CAS  Google Scholar 

  25. Giulivi C, Davies KJA (1994) Dityrosine: a marker for oxidatively modified proteins and selective proteolysis. Methods Enzymol 233:363–371

    PubMed  CAS  Google Scholar 

  26. Hu ML (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233:380–385

    PubMed  CAS  Google Scholar 

  27. Braughler JM, Duncan LA, Chase RL (1986) The involvment of iron in lipid peroxidation. J Biol Chem 261:10282–10289

    PubMed  CAS  Google Scholar 

  28. Klein RA (1970) The detection of oxidation in liposome preparations. Biochim Biophys Acta 210:483–486

    Google Scholar 

  29. Das DK (1994) Cellular, biochemical, and molecular aspects of reperfusion injury. Ann N Y Acad Sci 723:118–124

    Google Scholar 

  30. Nawarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol 287:R1244-R1249

    Article  CAS  Google Scholar 

  31. Cini M, Moretti A (1995) Studies on lipid peroxidation and protein oxidation in the aging brain. Neurobiol Aging 16:53–57

    Article  PubMed  CAS  Google Scholar 

  32. Keller JN, Mark RJ, Bruce AJ et al (1997) 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696

    Article  PubMed  CAS  Google Scholar 

  33. Davies MJ, Fu S, Wang H et al (1999) Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med 27:1151–1163

    Article  PubMed  CAS  Google Scholar 

  34. Leeuwenburgh C, Wagner P, Holloszy JO et al (1997) Caloric restriction attenuates dityrosine cross-linking of cardiac and skeletal muscle proteins in aging mice. Arch Biochem Biophys 346:74–80

    Article  PubMed  CAS  Google Scholar 

  35. Chao CC, Ma YS, Stadtman ER (1997) Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci U S A 94:2969–2977

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants VEGA 1/2263/05 and 3380/06, MVTS 39 and APVT-51-027404 from the Ministry of Education and Science of the Slovak Republic. The authors thank to Prof. B. Hamprecht and Dr. R. Murin for their comments and critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Babusikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babusikova, E., Hatok, J., Dobrota, D. et al. Age-related Oxidative Modifications of Proteins and Lipids in Rat Brain. Neurochem Res 32, 1351–1356 (2007). https://doi.org/10.1007/s11064-007-9314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9314-0

Keywords

Navigation