Skip to main content
Log in

Acute Alterations of Glutamate, Glutamine, GABA, and Other Amino Acids After Spinal Cord Contusion in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) leads to an alteration of energetic metabolism. As a consequence, glutamate, glutamine, aspartate and other important amino acids are altered after damage, leading to important disregulation of the neurochemical pathways. In the present study, we characterized the acute-phase changes in tissue concentration of amino acids involved in neurotransmitter and non-neurotransmitter actions after SCI by contusion in rats. Animals were submitted to either laminectomy or SCI by contusion and sacrificed at 2, 4, 8, and 12 h after lesion, for the analysis of tissue amino acids by HPLC. Results showed that both aspartate and glutamate contents diminished after SCI, while glutamine concentrations raised, however, the sum of molar concentrations of glutamate plus glutamine remained unchanged at all time points. GABA concentrations increased versus control group, while glycine remained unchanged. Finally, citrulline levels increased by effect of SCI, while taurine-increased only 4 h after lesion. Results indicate complex acute-phase changes in amino acids concentrations after SCI, reflecting the different damaging processes unchained after lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tei R, Kaido T, Nakase H, et al (2005) Secondary spinal cord hypoperfusion of circumscribed areas after injury in rats. Neurol Res 27:403–408

    Article  PubMed  Google Scholar 

  2. Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41:369–378

    Article  PubMed  CAS  Google Scholar 

  3. Bethea JR, Dietrich WD (2002) Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 15:355–360

    Article  PubMed  Google Scholar 

  4. Diaz-Ruiz A, Rios C, Duarte I, et al (1999) Cyclosporin-A inhibits lipid peroxidation after spinal cord injury in rats. Neurosci Lett 266:61–64

    Article  PubMed  CAS  Google Scholar 

  5. Ekshyyan O, Aw TY (2004) Apoptosis in acute and chronic neurological disorders. Front Biosci 9:1567–1576

    PubMed  CAS  Google Scholar 

  6. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    Article  PubMed  Google Scholar 

  7. McAdoo DJ, Xu G, Robak G, et al (2000) Evidence that reversed glutamate uptake contributes significantly to glutamate release following experimental injury to the rat spinal cord. Brain Res 865:283–285

    Article  PubMed  CAS  Google Scholar 

  8. Kosenko E, Llansola M, Montoliu C, et al (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    Article  PubMed  CAS  Google Scholar 

  9. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  10. Agrawal SK, Fehlings MG (1997) Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J Neurosci 17:1055–1063

    PubMed  CAS  Google Scholar 

  11. Schwartz-Bloom RD, Sah R (2001) γ-Aminobutyric acidA neurotransmission and cerebral ischemia. J Neurochem 77:353–371

    Article  PubMed  CAS  Google Scholar 

  12. Tillakaratne NJ, Mouria M, Ziv NB, et al (2000) Increased expression of glutamate decarboxylase (GAD(67)) in feline lumbar spinal cord after complete thoracic spinal cord transection. J Neurosci Res 60:219–230

    Article  PubMed  CAS  Google Scholar 

  13. Gundersen RY, Vaagenes P, Breivik T, et al (2005) Glycine–an important neurotransmitter and cytoprotective agent. Acta Anaesthesiol Scand 49:1108–1116

    Article  PubMed  CAS  Google Scholar 

  14. Eulenburg V, Armsen W, Betz H, et al (2005) Glycine transporters: essential regulators of neurotransmission. Trenes Biochem Sci 30:325–333

    Article  CAS  Google Scholar 

  15. Parsons CG, Danysz W, Hesselink M, et al (1998) Modulation of NMDA receptors by glycine-introduction to some basic aspects and recent developments. Amino Acids 14:207–216

    Article  PubMed  CAS  Google Scholar 

  16. Simpson RK Jr, Robertson CS, Goodman JC (1996) The role of glycine in spinal shock. J Spinal Cord Med 19:215–224

    PubMed  Google Scholar 

  17. Schaffer S, Takahashi K, Azuma J (2000). Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    Article  PubMed  CAS  Google Scholar 

  18. Tappaz ML (2004) Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res 29:83–96

    Article  PubMed  CAS  Google Scholar 

  19. Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26

    Article  PubMed  CAS  Google Scholar 

  20. Stover JF, Unterberg AW (2000) Increased cerebrospinal fluid glutamate and taurine concentrations are associated with traumatic brain edema formation in rats. Brain Res 875:51–55

    Article  PubMed  CAS  Google Scholar 

  21. Smullin DH, Skilling SR, Larson AA (1990) Interactions between substance P, calcitonin gene-related peptide, taurine and excitatory amino acids in the spinal cord. Pain 42:93–101

    Article  PubMed  CAS  Google Scholar 

  22. Heneka MT, Feinstein DL (2001) Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol 114:8–18

    Article  PubMed  CAS  Google Scholar 

  23. Xu J, Kim GM, Chen S (2001) iNOS and nitrotyrosine expression after spinal cord injury. J Neurotrauma 18:523–532

    Article  PubMed  CAS  Google Scholar 

  24. Diaz-Ruiz A, Ibarra A, Perez-Severiano F, et al (2002) Constitutive and inducible nitric oxide synthase activities after spinal cord contusion in rats, Neurosci Lett 319:129–132

    Article  PubMed  CAS  Google Scholar 

  25. Watanabe M, Fujimura Y, Nakamura M, et al (1998) Changes of amino acid levels and aspartate distribution in the cervical spinal cord after traumatic spinal cord injury. J Neurotrauma 15:285–293

    Article  PubMed  CAS  Google Scholar 

  26. Panter SS, Yum SW, Faden AI (1990) Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol 27:96–99

    Article  PubMed  CAS  Google Scholar 

  27. Demediuk P, Daly MP, Faden AI (1989) Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord. J Neurochem 52:1529–1536

    Article  PubMed  CAS  Google Scholar 

  28. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Article  PubMed  CAS  Google Scholar 

  29. Perez-Neri I, Montes S, Boll MC, et al (2004) Liquid chromatographic-fluorimetric method for the estimation of nitric oxide biosynthesis in the central nervous system. J Chromatogr B Analyt Technol Biomed Life Sci 806:133–139

    PubMed  CAS  Google Scholar 

  30. van der Hayden JA, Korf J (1978) Regional levels of GABA in the brain: semi-automated assay and prevention of post-morterm increase by 3-mercaptopropionic acid. J Neurochem 31:197–203

    Article  Google Scholar 

  31. Perez-Neri, Castro E, Montes S, et al (2006) Arginine, Citrulline and nitrate concentration in the cerebrospinal fluid from acute hydrocephalus patients. J Chromatogr B (in press)

  32. Mills CD, Xu GY, McAdoo DJ, et al (2001) Involvement of metabotropic glutamate receptors in excitatory amino acid and GABA release following spinal cord injury in rat. J Neurochem 79:835–848

    Article  PubMed  CAS  Google Scholar 

  33. Xu GY, Hughes MG, Ye Z (2004) Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Exp Neurol 187:329–336

    Article  PubMed  CAS  Google Scholar 

  34. Patel AJ, Weir MD, Hunt A, et al (1985) Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system. Brain Res 331:1–9

    Article  PubMed  CAS  Google Scholar 

  35. Broer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    Article  PubMed  CAS  Google Scholar 

  36. Laake JH, Slyngstad TA, Haug FM, et al (1995) Guamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures. J Neurochem 65:871–881

    Article  PubMed  CAS  Google Scholar 

  37. Benton RL, Ross CD, Miller KE (2000) Glutamine synthetase activities in spinal white and gray matter 7 days following spinal cord injury in rats. Neurosci Lett 291:1–4

    Article  PubMed  CAS  Google Scholar 

  38. Profyris C, Cheema SS, Zang D, et al (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436

    Article  PubMed  Google Scholar 

  39. Stys PK (1998) Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J Cereb Blood Flow Metab 18:2–25

    Article  PubMed  CAS  Google Scholar 

  40. Ramonet D, Rodriguez MJ, Fredriksson K, et al (2004) In vivo neuroprotective adaptation of the glutamate/glutamine cycle to neuronal death. Hippocampus 14:586–594

    Article  PubMed  CAS  Google Scholar 

  41. Rodriguez MJ, Robledo P, Andrade C, et al (2005) In vivo co-ordinated interactions between inhibitory systems to control glutamate-mediated hippocampal excitability. J Neurochem 95:651–661

    Article  PubMed  CAS  Google Scholar 

  42. Louzada PR, Lima AC, Mendonca-Silva DL, et al (2004) Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18:511–518

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by CONACyT grant No. 47467.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Ruiz, A., Salgado-Ceballos, H., Montes, S. et al. Acute Alterations of Glutamate, Glutamine, GABA, and Other Amino Acids After Spinal Cord Contusion in Rats. Neurochem Res 32, 57–63 (2007). https://doi.org/10.1007/s11064-006-9225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9225-5

Keywords

Navigation