Skip to main content
Log in

Modification of Morphine-induced Hyperlocomotion and Antinociception in Mice by Clorgyline, a Monoamine Oxidase-A Inhibitor

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We evaluated the effects of pretreatment with clorgyline, an irreversible monoamine oxidase (MAO)-A inhibitor, on morphine-induced hyperlocomotion and antinociception. A single administration of morphine (30 mg/kg, i.p.) to male ICR mice induced a hyperlocomotion. ANOVA analysis revealed the statistical significance of the morphine effect on horizontal locomotion and of the clorgyline pretreatment × morphine interaction effect, but not of the effect of clorgyline pretreatment. The initial (5 min after challenge) phase of morphine actions vs. saline challenge appeared as if morphine had a strong inhibitory effect on locomotor activity in combination with different doses of clorgyline. The mice administered with morphine in combination of clorgyline (1 and 10 mg/kg) did not show any stereotypic behaviors. Clorgyline at a dose of 0.1 mg/kg but not other doses tested significantly potentiated morphine-induced antinociception evaluated by tail flick but not hot plate test. During the measurements of locomotor activity and antinociception, clorgyline at doses of 1 and 10 mg/kg significantly inhibited monoamine metabolism through MAO. These results suggest that clorgyline showed an inhibitory effect on morphine-induced hyperlocomotion, but not antinociception, through MAO inhibition. There is not a possibility that clorgyline pretreatment enhanced morphine action on motor activity, resulting in the abnormal behavior from hyperlocomotion to stereotypic movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dollé P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383:819–823

    Article  PubMed  CAS  Google Scholar 

  2. Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR (1997) Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94:1544–1549

    Article  PubMed  CAS  Google Scholar 

  3. Uhl GR, Sora I, Wang Z (1999) The μ opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses. Proc Natl Acad Sci USA 96:7752–7755

    Article  PubMed  CAS  Google Scholar 

  4. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    PubMed  CAS  Google Scholar 

  5. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  CAS  Google Scholar 

  6. Mathon DS, Lesscher HM, Gerrits MA, Kamal A, Pintar JE, Schuller AG, Spruijt BM, Burbach JP, Smidt MP, van Ree JM, Ramakers GM (2005) Increased GABAergic input to ventral tegmental area dopaminergic neurons associated with decreased cocaine reinforcement in μ-opioid receptor knockout mice. Neuroscience 130:359–367

    Article  PubMed  CAS  Google Scholar 

  7. Contarino A, Picetti R, Matthes HW, Koob GF, Kieffer BL, Gold LH (2002) Lack of reward and locomotor stimulation induced by heroin in μ-opioid receptor-deficient mice. Eur J Pharmacol 446:103–109

    Article  PubMed  CAS  Google Scholar 

  8. Moles A, Kieffer BL, D’Amato FR (2004) Deficit in attachment behavior in mice lacking the μ-opioid receptor gene. Science 304:1983–1986

    Article  PubMed  CAS  Google Scholar 

  9. De Vries TJ, Shippenberg TS (2002) Neural systems underlying opiate addiction. J Neurosci 22:3321–3325

    PubMed  Google Scholar 

  10. Gardner EL (2004) Brain reward mechanisms. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG (eds) Substance abuse: a comprehensive textbook, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 48–97

    Google Scholar 

  11. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    PubMed  CAS  Google Scholar 

  12. Nestler EJ, Berhow MT, Brodkin ES (1996) Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol Psychiat 1:190–199

    CAS  Google Scholar 

  13. Przewlocki R (2004) Opioid abuse and brain gene expression. Eur J Pharmacol 500:331–349

    Article  PubMed  CAS  Google Scholar 

  14. Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36:229–240

    Article  PubMed  CAS  Google Scholar 

  15. Kitanaka N, Kitanaka J, Takemura M (2005) Inhibition of methamphetamine-induced hyperlocomotion in mice by clorgyline, a monoamine oxidase-A inhibitor, through alteration of the 5-hydroxytryptamine turnover in the striatum. Neuroscience 130:295–308

    Article  PubMed  CAS  Google Scholar 

  16. Kitanaka N, Kitanaka J, Takemura M (2005) Repeated clorgyline treatment inhibits methamphetamine-induced behavioral sensitization in mice. Neurochem Res 30:445–451

    Article  PubMed  CAS  Google Scholar 

  17. Kitanaka N, Sora I, Kinsey S, Zeng Z, Uhl GR (1998) No heroin or morphine 6β-glucuronide analgesia in μ-opioid receptor knockout mice. Eur J Pharmacol 355:R1–R3

    Article  PubMed  CAS  Google Scholar 

  18. Kitanaka N, Kitanaka J, Takemura M (2003) Behavioral sensitization and alteration in monoamine metabolism in mice after single versus repeated methamphetamine administration. Eur J Pharmacol 474:63–70

    Article  PubMed  CAS  Google Scholar 

  19. Tatsuta T, Kitanaka N, Kitanaka J, Morita Y, Takemura M (2005) Effects of monoamine oxidase inhibitors on methamphetamine-induced stereotypy in mice and rats. Neurochem Res 30:1377–1385

    Article  PubMed  CAS  Google Scholar 

  20. Mori T, Ito S, Narita M, Suzuki T, Sawaguchi T (2004) Combined effects of psychostimulants and morphine on locomotor activity in mice. J Pharmacol Sci 96:450–458

    Article  PubMed  CAS  Google Scholar 

  21. Finberg JP, Youdim MB (1983) Selective MAO A and B inhibitors: their mechanism of action and pharmacology. Neuropharmacology 22:441–446

    Article  PubMed  CAS  Google Scholar 

  22. de Vries M, Odink J (1991) Simultaneous measurement of serotonin and 5-hydroxyindoleacetic acid in rat brain using a liquid chromatographic method with electrochemical detection. J Chromatogr 564:250–257

    Article  PubMed  Google Scholar 

  23. Felner AE, Waldmeier PC (1979) Cumulative effects of irreversible MAO inhibitors in vivo. Biochem Pharmacol 28:995–1002

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki T, Maeda J, Funada M, Misawa M (1995) The D3-receptor agonist (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) attenuates morphine-induced hyperlocomotion in mice. Neurosci Lett 187:45–48

    Article  PubMed  CAS  Google Scholar 

  25. Segal DS, Kuczenski R, Okuda C (1992) Clorgyline-induced increases in presynaptic DA: changes in the behavioral and neurochemical effects of amphetamine using in vivo microdialysis. Pharmacol Biochem Behav 42:421–429

    Article  PubMed  CAS  Google Scholar 

  26. Tham SM, Angus JA, Tudor EM, Wright CE (2005) Synergic and additive interactions of the cannabinoid agonist CP55,940 with μ-opioid receptor and α2-adrenoceptor agonists in acute pain models in mice. Br J Pharmacol 144:875–884

    Article  PubMed  CAS  Google Scholar 

  27. Itzhak Y, Stein I, Zhang S-H, Kassim CO, Cristante D (1991) Binding of σ-ligands to C57BL/6 mouse brain membranes: effects of monoamine oxidase inhibitors and subcellular distribution studies suggest the existence of σ-receptor subtypes. J Pharmacol Exp Ther 257:141–148

    PubMed  CAS  Google Scholar 

  28. Alemany R, Olmos G, García-Sevilla JA (1995) The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver I2 imidazoline-preferring receptors. Br J Pharmacol 114:837–845

    PubMed  CAS  Google Scholar 

  29. Rane A, Gawronska-Sxklarz B, Svensson JO (1985) Natural (−)- and unnatural (+)-enantiomers of morphine: comparative metabolism and effect of morphine and phenobarbital treatment. J Pharmacol Exp Ther 234:761–765

    PubMed  CAS  Google Scholar 

  30. King CD, Rios GR, Green MD, MacKenzie PI, Tephly TR (1997) Comparison of stably expressed UGT1.1 and UTG2B1 in the glucuronidation of opioid compounds. Drug Metab Dispos 25:251–255

    PubMed  CAS  Google Scholar 

  31. Morland J, Jones BL, Palomares ML, Alkana RL (1994) Morphine-6-glucuronide: a potent stimulator of locomotor activity in mice. Life Sci 55:163–168

    Article  Google Scholar 

  32. Lipkowski AW, Carr DB, Langlade A, Osgood PF, Szyfelbein SK (1994) Morphine-3-glucuronide: silent regulator of morphine actions. Life Sci 55:149–154

    Article  PubMed  CAS  Google Scholar 

  33. Sharma U, Roberts ES, Hollenberg PF (1996) Formation of a metabolic intermediate complex of cytochrome P4502B1 by clorgyline. Drug Metab Dispos 24:1247–1253

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NK was supported by a Grant-in-Aid for Researchers, Hyogo College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Kitanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitanaka, N., Kitanaka, J. & Takemura, M. Modification of Morphine-induced Hyperlocomotion and Antinociception in Mice by Clorgyline, a Monoamine Oxidase-A Inhibitor. Neurochem Res 31, 829–837 (2006). https://doi.org/10.1007/s11064-006-9087-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9087-x

Keywords

Navigation