Skip to main content
Log in

A Nonrewarding NMDA Receptor Antagonist Impairs the Acquisition, Consolidation, and Expression of Morphine Conditioned Place Preference in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

N-methyl-d-aspartate (NMDA) receptor antagonists block morphine-induced conditioned place preference (CPP). Although polyamines are endogenous modulators of the NMDA receptor, it is not known whether polyaminergic agents induce CPP or modulate morphine-induced CPP. Here, we examined whether polyamine ligands modify morphine CPP acquisition, consolidation, and expression. Adult male albino Swiss mice received saline (0.9 % NaCl, intraperitoneally (i.p.)) or morphine (5 mg/kg, i.p.) and were respectively confined to a black or a white compartment for 30 min for four consecutive days for CPP induction. The effect of arcaine (3 mg/kg, i.p.) or spermidine (30 mg/kg, i.p.), respectively, an antagonist and an agonist of the polyamine-binding site at the NMDA receptor, on the acquisition, consolidation, and expression of morphine CPP was studied. In those experiments designed to investigate whether spermidine prevented or reversed the effect of arcaine, spermidine (30 mg/kg, i.p.) was administered 15 min before or 15 min after arcaine, respectively. Arcaine and spermidine did not induce CPP or aversion per se. Arcaine (3 mg/kg, i.p.) impaired the acquisition, consolidation, and expression of morphine CPP. Spermidine prevented the impairing effect of arcaine on the acquisition of morphine CPP but not the impairing effect of arcaine on consolidation or expression of morphine CPP. These results suggest that arcaine may impair morphine CPP acquisition by modulating the polyamine-binding site at the NMDA receptor. However, the arcaine-induced impairment of consolidation and expression of morphine CPP seems to involve other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koob GF (1998) Circuits, drugs, and drug addiction. Adv Pharmacol 42:978–982

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki T, Yoshiike M, Mizoguchi H, Kamei J, Misawa M, Nagase H (1994) Blockade of delta-opioid receptors prevents morphine-induced place preference in mice. Jpn J Pharmacol 66:131–137

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki T, Kato H, Tsuda M, Suzuki H, Misawa M (1999) Effects of the non-competitive NMDA receptor antagonist ifenprodil on the morphine-induced place preference in mice. Life Sci 64:151–156

    Article  Google Scholar 

  4. Leshner AI, Koob GF (1999) Drugs of abuse and the brain. Proc Assoc Am Physicians 111:99–108

    Article  CAS  PubMed  Google Scholar 

  5. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  CAS  PubMed  Google Scholar 

  6. Ribeiro Do Couto B, Aguilar MA, Rodriguez-Arias M, Minarro J (2005) Long-lasting rewarding effects of morphine induced by drug primings. Brain Res 1050:53–63

    Article  CAS  PubMed  Google Scholar 

  7. Lin J, Liu L, Wen Q, Zheng C, Gao Y, Peng S, Tan Y, Li Y (2014) Rapamycin prevents drug seeking via disrupting reconsolidation of reward memory in rats. Int J Neuropsychopharmacol 17:127–136

    Article  CAS  PubMed  Google Scholar 

  8. Liu SB, Ma L, Guo HJ, Feng B, Guo YY, Li XQ, Sun WJ, Zheng LH, Zhao MG (2012) Gentiopicroside attenuates morphine rewarding effect through downregulation of GluN2B receptors in nucleus accumbens. CNS Neurosci Ther 18:652–658

    Article  CAS  PubMed  Google Scholar 

  9. Wise RA (1988) The neurobiology of craving: implications for the understanding and treatment of addiction. J Abnorm Psychol 97:118–132

    Article  CAS  PubMed  Google Scholar 

  10. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    Article  CAS  PubMed  Google Scholar 

  11. Narita M, Matsushima Y, Niikura K, Takagi S, Nakahara K, Kurahashi K, Abe M, Saeki M, Asato M, Imai S, Ikeda K, Kuzumaki N, Suzuki T (2010) Implication of dopaminergic projection from the ventral tegmental area to the anterior cingulate cortex in mu-opioid-induced place preference. Addict Biol 15:434–447

    Article  CAS  PubMed  Google Scholar 

  12. Hnasko TS, Sotak BN, Palmiter RD (2005) Morphine reward in dopamine-deficient mice. Nature 438:854–857

    Article  CAS  PubMed  Google Scholar 

  13. Leone P, Pocock D, Wise RA (1991) Morphine-dopamine interaction: ventral tegmental morphine increases nucleus accumbens dopamine release. Pharmacol Biochem Behav 39:469–472

    Article  CAS  PubMed  Google Scholar 

  14. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    CAS  PubMed  Google Scholar 

  15. Zarrindast MR, Rezayof A, Sahraei H, Haeri-Rohani A, Rassouli Y (2003) Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res 965:212–221

    Article  CAS  PubMed  Google Scholar 

  16. Rezayof A, Golhasani-Keshtan F, Haeri-Rohani A, Zarrindast MR (2007) Morphine-induced place preference: involvement of the central amygdala NMDA receptors. Brain Res 1133:34–41

    Article  CAS  PubMed  Google Scholar 

  17. Zarrindast MR, Jafari-Sabet M, Rezayat M, Djahanguiri B, Rezayof A (2006) Involvement of NMDA receptors in morphine state-dependent learning in mice. Intl J Neurosci 116:731–743

    Article  CAS  Google Scholar 

  18. Nestler EJ (1996) Under siege: the brain on opiates. Neuron 16:897–900

    Article  CAS  PubMed  Google Scholar 

  19. Tzschentke TM, Schmidt WJ (2003) Glutamatergic mechanisms in addiction. Mol Psychiatry 8:373–382

    Article  CAS  PubMed  Google Scholar 

  20. Mazei-Robison MS, Nestler EJ (2012) Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2:a012070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fields HL, Margolis EB (2015) Understanding opioid reward. Trends Neurosci 38:217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, Georges F (2011) Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci U S A 108:16446–16450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xi ZX, Stein EA (2002) GABAergic mechanisms of opiate reinforcement. Alcohol Alcohol 37:485–494

    Article  CAS  PubMed  Google Scholar 

  24. Danysz W, Kozela E, Parsons CG, Sladek M, Bauer T, Popik P (2005) Peripherally acting NMDA receptor/glycineB site receptor antagonists inhibit morphine tolerance. Neuropharmacology 48:360–371

    Article  CAS  PubMed  Google Scholar 

  25. Makarska-Bialek K, Kaminski RM, Czuczwar SJ (2005) Influence of the antagonist of the glycine site of NMDA receptors, MRZ 2/576, on the anticonvulsant activity of conventional antiepileptic drugs in mice. Pharmacol Rep 57:458–466

    CAS  PubMed  Google Scholar 

  26. Backstrom P, Hyytia P (2006) Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking. Neuropsychopharmacology 31:778–786

    Article  PubMed  CAS  Google Scholar 

  27. Del Pozo E, Barrios M, Baeyens JM (1996) The NMDA receptor antagonist dizocilpine (MK-801) stereoselectively inhibits morphine-induced place preference conditioning in mice. Psychopharmacology 125:209–213

    Article  PubMed  Google Scholar 

  28. Huang EY, Liu TC, Tao PL (2003) Co-administration of dextromethorphan with morphine attenuates morphine rewarding effect and related dopamine releases at the nucleus accumbens. Naunyn Schmiedeberg’s Arch Pharmacol 368:386–392

    Article  CAS  Google Scholar 

  29. Lue WM, Huang EY, Yang SN, Wong CS, Tao PL (2007) Post-treatment of dextromethorphan reverses morphine effect on conditioned place preference in rats. Synapse 61:420–428

    Article  CAS  PubMed  Google Scholar 

  30. Tzschentke TM, Schmidt WJ (1995) N-methyl-d-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats. Neurosci Lett 193:37–40

    Article  CAS  PubMed  Google Scholar 

  31. Narita M, Aoki T, Suzuki T (2001) Mechanisms of morphine-induced rewarding effect: involvement of NMDA receptor subunits. Nihon Yakurigaku Zasshi 117:13–19

    Article  CAS  PubMed  Google Scholar 

  32. Ma YY, Guo CY, Yu P, Lee DY, Han JS, Cui CL (2006) The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats. Exp Neurol 200:343–355

    Article  CAS  PubMed  Google Scholar 

  33. Ma YY, Chu NN, Guo CY, Han JS, Cui CL (2007) NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Exp Neurol 203:309–319

    Article  CAS  PubMed  Google Scholar 

  34. Chen SL, Hsu KY, Huang EY, Lu RB, Tao PL (2011) Low doses of dextromethorphan attenuate morphine-induced rewarding via the sigma-1 receptor at ventral tegmental area in rats. Drug Alcohol Depend 117:164–169

    Article  CAS  PubMed  Google Scholar 

  35. Hu L, Jing XH, Cui CL, Xing GG, Zhu B (2012) NMDA receptors in the midbrain play a critical role in dopamine-mediated hippocampal synaptic potentiation caused by morphine. Addict Biol 19:380–391

    Article  PubMed  CAS  Google Scholar 

  36. Balster RL (1987) Abuse potential evaluation of inhalants. Drug Alcohol Depend 19:7–15

    Article  CAS  PubMed  Google Scholar 

  37. Koek W, Woods JH, Winger GD (1988) MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. J Pharmacol Exp Ther 245:969–974

    CAS  PubMed  Google Scholar 

  38. Willetts J, Balster RL, Leander JD (1990) The behavioral pharmacology of NMDA receptor antagonists. Trends Pharmacol Sci 11:423–428

    Article  CAS  PubMed  Google Scholar 

  39. Grotta J, Clark W, Coull B, Pettigrew LC, Mackay B, Goldstein LB, Meissner I, Murphy D, LaRue L (1995) Safety and tolerability of the glutamate antagonist CGS 19755 (Selfotel) in patients with acute ischemic stroke. Results of a phase IIa randomized trial. Stroke 26:602–605

    Article  CAS  PubMed  Google Scholar 

  40. Sveinbjornsdottir S, Sander JW, Upton D, Thompson PJ, Patsalos PN, Hirt D, Emre M, Lowe D, Duncan JS (1993) The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 16:165–174

    Article  CAS  PubMed  Google Scholar 

  41. Papp M, Moryl E, Maccecchini ML (1996) Differential effects of agents acting at various sites of the NMDA receptor complex in a place preference conditioning model. Eur J Pharmacol 317:191–196

    Article  CAS  PubMed  Google Scholar 

  42. Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki T, Kato H, Aoki T, Tsuda M, Narita M, Misawa M (2000) Effects of the non-competitive NMDA receptor antagonist ketamine on morphine-induced place preference in mice. Life Sci 67:383–389

    Article  CAS  PubMed  Google Scholar 

  44. Marglin SH, Milano WC, Mattie ME, Reid LD (1989) PCP and conditioned place preferences. Pharmacol Biochem Behav 33:281–283

    Article  CAS  PubMed  Google Scholar 

  45. Noda Y, Nabeshima T (2004) Involvement of signal transduction cascade via dopamine-D1 receptors in phencyclidine dependence. Ann N Y Acad Sci 1025:62–68

    Article  CAS  PubMed  Google Scholar 

  46. Shin EJ, Nah SY, Kim WK, Ko KH, Jhoo WK, Lim YK, Cha JY, Chen CF, Kim HC (2005) The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via sigma1 receptor activation: comparison with the effects of dextromethorphan. Br J Pharmacol 144:908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Domino EF (2010) Taming the ketamine tiger. 1965. Anesthesiology 113:678–684

    PubMed  Google Scholar 

  48. Miller SC (2011) Dextromethorphan to dextrorphan: a pathway towards abuse liability. Hum Psychopharmacol 26:89–90

    Article  PubMed  Google Scholar 

  49. Mony L, Zhu S, Carvalho S, Paoletti P (2011) Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J 30:3134–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mariani RK, Mello CF, Rosa MM, Ceretta AP, Camera K, Rubin MA (2011) Effect of naloxone and morphine on arcaine-induced state-dependent memory in rats. Psychopharmacology 215:483–491

    Article  CAS  PubMed  Google Scholar 

  51. Panos JJ, Rademacher DJ, Renner SL, Steinpreis RE (1999) The rewarding properties of NMDA and MK-801 (dizocilpine) as indexed by the conditioned place preference paradigm. Pharmacol Biochem Behav 64:591–595

    Article  CAS  PubMed  Google Scholar 

  52. Zarrindast MR, Lashgari R, Rezayof A, Motamedi F, Nazari-Serenjeh F (2007) NMDA receptors of dorsal hippocampus are involved in the acquisition, but not in the expression of morphine-induced place preference. Eur J Pharmacol 568:192–198

    Article  CAS  PubMed  Google Scholar 

  53. Tzschentke TM, Schmidt WJ (1997) Interactions of MK-801 and GYKI 52466 with morphine and amphetamine in place preference conditioning and behavioural sensitization. Behav Brain Res 84:99–107

    Article  CAS  PubMed  Google Scholar 

  54. Fukushiro DF, Alvarez Jdo N, Tatsu JA, de Castro JP, Chinen CC, Frussa-Filho R (2007) Haloperidol (but not ziprasidone) withdrawal enhances cocaine-induced locomotor activation and conditioned place preference in mice. Prog Neuropsychopharmacol Biol Psychiatry 31:867–872

    Article  CAS  PubMed  Google Scholar 

  55. Tahsili-Fahadan P, Yahyavi-Firouz-Abadi N, Khoshnoodi MA, Motiei-Langroudi R, Tahaei SA, Ghahremani MH, Dehpour AR (2006) Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha2-adrenoceptors. Neuropsychopharmacology 31:1722–1732

    Article  CAS  PubMed  Google Scholar 

  56. Signor C, Mello CF, Porto GP, Ribeiro DA, Rubin MA (2014) Spermidine improves fear memory persistence. Eur J Pharmacol 730:72–76

    Article  CAS  PubMed  Google Scholar 

  57. Ribeiro DA, Mello CF, Signor C, Rubin MA (2013) Polyaminergic agents modulate the reconsolidation of conditioned fear. Neurobiol Lear Mem 104C:9–15

    Article  CAS  Google Scholar 

  58. Tabaeizadeh M, Motiei-Langroudi R, Mirbaha H, Esmaeili B, Tahsili-Fahadan P, Javadi-Paydar M, Ghaffarpour M, Dehpour AR (2013) The differential effects of OX1R and OX2R selective antagonists on morphine conditioned place preference in naive versus morphine-dependent mice. Behav Brain Res 237:41–48

    Article  CAS  PubMed  Google Scholar 

  59. Kao JH, Huang EY, Tao PL (2011) NR2B subunit of NMDA receptor at nucleus accumbens is involved in morphine rewarding effect by siRNA study. Drug Alcohol Depend 118:366–374

    Article  CAS  PubMed  Google Scholar 

  60. Bardo MT, Miller JS, Neisewander JL (1984) Conditioned place preference with morphine: the effect of extinction training on the reinforcing CR. Pharmacol Biochem Behav 21:545–549

    Article  CAS  PubMed  Google Scholar 

  61. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  CAS  PubMed  Google Scholar 

  62. Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 18:75–113

    Article  CAS  PubMed  Google Scholar 

  63. van Ree JM, Gerrits MA, Vanderschuren LJ (1999) Opioids, reward and addiction: an encounter of biology, psychology, and medicine. Pharmacol Rev 51:341–396

    PubMed  Google Scholar 

  64. Papp M, Gruca P, Willner P (2002) Selective blockade of drug-induced place preference conditioning by ACPC, a functional NDMA-receptor antagonist. Neuropsychopharmacology 27:727–743

    Article  CAS  PubMed  Google Scholar 

  65. Bisaga A, Popik P (2000) In search of a new pharmacological treatment for drug and alcohol addiction: N-methyl-d-aspartate (NMDA) antagonists. Drug Alcohol Depend 59:1–15

    Article  CAS  PubMed  Google Scholar 

  66. Kim HS, Jang CG, Park WK (1996) Inhibition by MK-801 of morphine-induced conditioned place preference and postsynaptic dopamine receptor supersensitivity in mice. Pharmacol Biochem Behav 55:11–17

    Article  CAS  PubMed  Google Scholar 

  67. Yonghui L, Xigeng Z, Yunjing B, Xiaoyan Y, Nan S (2006) Opposite effects of MK-801 on the expression of food and morphine-induced conditioned place preference in rats. J Psychopharmacol 20:40–46

    Article  PubMed  Google Scholar 

  68. Li F, Wang XS, Dai RP, Zhang JY, Zhou XF, Hao W, Li CQ (2011) The activation of NMDA receptor-ERK pathway in the central amygdala is required for the expression of morphine-conditioned place preference in the rat. Neurotox Res 20:362–371

    Article  CAS  PubMed  Google Scholar 

  69. Fan Y, Niu H, Rizak JD, Li L, Wang G, Xu L, Ren H, Lei H, Yu H (2012) Combined action of MK-801 and ceftriaxone impairs the acquisition and reinstatement of morphine-induced conditioned place preference, and delays morphine extinction in rats. Neurosci Bull 28:567–576

    Article  CAS  PubMed  Google Scholar 

  70. Popik P, Danysz W (1997) Inhibition of reinforcing effects of morphine and motivational aspects of naloxone-precipitated opioid withdrawal by N-methyl-d-aspartate receptor antagonist, memantine. Behav Pharmacol 14:237–244

    Article  Google Scholar 

  71. Popik P, Wrobel M, Rygula R, Bisaga A, Bespalov AY (2003) Effects of memantine, an NMDA receptor antagonist, on place preference conditioned with drug and nondrug reinforcers in mice. Behav Pharmacol 14:237–244

    Article  CAS  PubMed  Google Scholar 

  72. Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J (2004) Effects of NMDA receptor antagonists (MK-801 and memantine) on the acquisition of morphine-induced conditioned place preference in mice. Prog Neuropsychopharmacol Biol Psychiatry 28:1035–1043

    Article  PubMed  CAS  Google Scholar 

  73. Gao C, Che LW, Chen J, Xu XJ, Chi ZQ (2003) Ohmefentanyl stereoisomers induce changes of CREB phosphorylation in hippocampus of mice in conditioned place preference paradigm. Cell Res 13:29–34

    Article  CAS  PubMed  Google Scholar 

  74. Ma YY, Yu P, Guo CY, Cui CL (2011) Effects of ifenprodil on morphine-induced conditioned place preference and spatial learning and memory in rats. Neurochem Res 36:383–391

    Article  CAS  PubMed  Google Scholar 

  75. Popik P, Kolasiewicz W (1999) Mesolimbic NMDA receptors are implicated in the expression of conditioned morphine reward. Naunyn Schmiedeberg’s Arch Pharmacol 359:288–294

    Article  CAS  Google Scholar 

  76. Harris GC, Wimmer M, Byrne R, Aston-Jones G (2004) Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience 129:841–847

    Article  CAS  PubMed  Google Scholar 

  77. Wei XL, Su RB, Lu XQ, Liu Y, Yu SZ, Yuan BL, Li J (2005) Inhibition by agmatine on morphine-induced conditioned place preference in rats. Eur J Pharmacol 515:99–106

    Article  CAS  PubMed  Google Scholar 

  78. Zhu Y, King MA, Schuller AG, Nitsche JF, Reidl M, Elde RP, Unterwald E, Pasternak GW, Pintar JE (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24:243–252

    Article  CAS  PubMed  Google Scholar 

  79. Zhu H, Ho IK (1998) NMDA-R1 antisense oligonucleotide attenuates withdrawal signs from morphine. Eur J Pharmacol 352:151–156

    Article  CAS  PubMed  Google Scholar 

  80. Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33:1351–1365

    Article  PubMed  Google Scholar 

  81. Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237

    Article  CAS  PubMed  Google Scholar 

  82. Miyamoto H, Rahman MM, Chang C (2004) Molecular basis for the antiandrogen withdrawal syndrome. J Cel Biochem 91:3–12

    Article  CAS  Google Scholar 

  83. Inoue M, Mishina M, Ueda H (2003) Locus-specific rescue of GluRepsilon1 NMDA receptors in mutant mice identifies the brain regions important for morphine tolerance and dependence. J Neurosci 23:6529–6536

    CAS  PubMed  Google Scholar 

  84. Narita M, Aoki T, Suzuki T (2000) Molecular evidence for the involvement of NR2B subunit containing N-methyl-d-aspartate receptors in the development of morphine-induced place preference. Neuroscience 101:601–606

    Article  CAS  PubMed  Google Scholar 

  85. Rubin MA, Berlese DB, Stiegemeier JA, Volkweis MA, Oliveira DM, dos Santos TL, Fenili AC, Mello CF (2004) Intra-amygdala administration of polyamines modulates fear conditioning in rats. J Neurosci 24:2328–2334

    Article  CAS  PubMed  Google Scholar 

  86. Ceretta AP, Camera K, Mello CF, Rubin MA (2008) Arcaine and MK-801 make recall state-dependent in rats. Psychopharmacology 201:405–411

    Article  CAS  PubMed  Google Scholar 

  87. Rubin MA, Stiegemeier JA, Volkweis MA, Oliveira DM, Fenili AC, Boemo RL, Jurach A, Mello CF (2001) Intra-amygdala spermidine administration improves inhibitory avoidance performance in rats. Eur J Pharmacol 423:35–39

    Article  CAS  PubMed  Google Scholar 

  88. Camera K, Mello CF, Ceretta AP, Rubin MA (2007) Systemic administration of polyaminergic agents modulate fear conditioning in rats. Psychopharmacology 192:457–464

    Article  CAS  PubMed  Google Scholar 

  89. Berlese DB, Sauzem PD, Carati MC, Guerra GP, Stiegemeier JA, Mello CF, Rubin MA (2005) Time-dependent modulation of inhibitory avoidance memory by spermidine in rats. Neurobiol Learn Mem 83:48–53

    Article  CAS  PubMed  Google Scholar 

  90. da Rosa MM, Mello CF, Camera K, Ceretta AP, Ribeiro DA, Signor C, Rubin MA (2012) Opioid mechanisms are involved in the disruption of arcaine-induced amnesia by context pre-exposure. Neurobiol Learn Mem 97:294–300

    Article  PubMed  CAS  Google Scholar 

  91. Popik P, Mamczarz J, Fraczek M, Widla M, Hesselink M, Danysz W (1998) Inhibition of reinforcing effects of morphine and naloxone-precipitated opioid withdrawal by novel glycine site and uncompetitive NMDA receptor antagonists. Neuropharmacology 37:1033–1042

    Article  CAS  PubMed  Google Scholar 

  92. Kolesnikov YA, Pick CG, Ciszewska G, Pasternak GW (1993) Blockade of tolerance to morphine but not to kappa opioids by a nitric oxide synthase inhibitor. Proc Natl Acad Sci U S A 90:5162–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moron JA, Gullapalli S, Taylor C, Gupta A, Gomes I, Devi LA (2010) Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology 35:955–966

    Article  CAS  PubMed  Google Scholar 

  94. Huang MJ, Regunathan S, Botta M, Lee K, McClendon E, Yi GB, Pedersen ML, Berkowitz DB, Wang G, Travagli M, Piletz JE (2003) Structure-activity analysis of guanidine group in agmatine for brain agmatinase. Ann NY Acad Sci 1009:52–63

    Article  CAS  PubMed  Google Scholar 

  95. Bernstein HG, Derst C, Stich C, Pruss H, Peters D, Krauss M, Bogerts B, Veh RW, Laube G (2011) The agmatine-degrading enzyme agmatinase: a key to agmatine signaling in rat and human brain? Amino Acids 40:453–465

    Article  CAS  PubMed  Google Scholar 

  96. Shen F, Li YJ, Shou XJ, Cui CL (2012) Role of the NO/sGC/PKG signaling pathway of hippocampal CA1 in morphine-induced reward memory. Neurobiol Learn Mem 98:130–138

    Article  CAS  PubMed  Google Scholar 

  97. Shen F, Wang N, Qi C, Li YJ, Cui CL (2014) The NO/sGC/PKG signaling pathway in the NAc shell is necessary for the acquisition of morphine-induced place preference. Behav Neurosci 128:446–459

    Article  CAS  PubMed  Google Scholar 

  98. Gholami A, Haeri-Rohani A, Sahraie H, Zarrindast MR (2002) Nitric oxide mediation of morphine-induced place preference in the nucleus accumbens of rat. Eur J Pharmacol 449:269–277

    Article  CAS  PubMed  Google Scholar 

  99. Gholami A, Zarrindast MR, Sahraei H, Haerri-Rohani A (2003) Nitric oxide within the ventral tegmental area is involved in mediating morphine reward. Eur J Pharmacol 458:119–128

    Article  CAS  PubMed  Google Scholar 

  100. Kiyani A, Javadi-Paydar M, Mohammadkhani H, Esmaeili B, Dehpour AR (2011) Lithium chloride disrupts consolidation of morphine-induced conditioned place preference in male mice: the nitric oxide/cyclic GMP signaling pathway. Behav Brain Res 219:240–247

    Article  CAS  PubMed  Google Scholar 

  101. Manzanedo C, Aguilar MA, Do Couto BR, Rodriguez-Arias M, Minarro J (2009) Involvement of nitric oxide synthesis in sensitization to the rewarding effects of morphine. Neurosci Lett 464:67–70

    Article  CAS  PubMed  Google Scholar 

  102. Manzanedo C, Aguilar MA, Rodriguez-Arias M, Navarro M, Minarro J (2004) 7-Nitroindazole blocks conditioned place preference but not hyperactivity induced by morphine. Behav Brain Res 150:73–82

    Article  CAS  PubMed  Google Scholar 

  103. Sahraei H, Zarei F, Eidi A, Oryan S, Shams J, Khoshbaten A, Zarrindast MR (2007) The role of nitric oxide within the nucleus accumbens on the acquisition and expression of morphine-induced place preference in morphine sensitized rats. Eur J Pharmacol 556:99–106

    Article  CAS  PubMed  Google Scholar 

  104. Ma P, Liu H, Li H, Huang X, Chen L, Zhai H (2014) Involvement of the insular nitric oxide signaling pathway in the expression of morphine-induced conditioned place preference in rats. Neuroreport 25:641–646

    Article  CAS  PubMed  Google Scholar 

  105. Cadet JL (2014) Epigenetics of stress, addiction, and resilience: therapeutic implications. Mol Neurobiol. doi:10.1007/s12035-014-9040-y

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council for Scientific and Technological Development-CNPq of Brazil (grant numbers 306468/2014-0, 307812/2014-6) and Fundação de Amparo à Pesquisa do Rio Grande do Sul-FAPERGS. CFM and MAR are recipients of CNPq research productivity fellowships. LT, APS, BAG, and PKSF are recipients of “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES” fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Antonello Rubin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Carlos Fernando Mello and Maribel Antonello Rubin contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

ESM 2

(DOC 98 kb)

ESM 3

(DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomazi, L., Mello, C.F., Schöffer, A.P. et al. A Nonrewarding NMDA Receptor Antagonist Impairs the Acquisition, Consolidation, and Expression of Morphine Conditioned Place Preference in Mice. Mol Neurobiol 54, 710–721 (2017). https://doi.org/10.1007/s12035-015-9678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9678-0

Keywords

Navigation