Skip to main content
Log in

Effects of optokinetic stimulation on motor asymmetry in the goldfish

  • Published:
Neurophysiology Aims and scope

Abstract

In goldfish fries, we examined the effect of the optomotor reaction (drive to swim toward moving images of vertical dark bars) on the behavioral motor asymmetry. Contralateral optokinetic stimulation of fishes (rotation of the bars against the direction preferred by fishes in their turnings) gradually smoothed and, later on, inverted the motor asymmetry, while the asymmetry underwent no modifications in the case of ipsilateral optokinetic stimulation (rotation of the bars in the direction similar to that preferred for turnings). Contralateral optokinetic stimulation also induced long-lasting inversion of the motor asymmetry of immobilized fishes deprived of the possibility to follow the movement of bar images. Ipsilateral optokinetic stimulation of fishes with the enucleation of the ipsilateral eye enhanced their motor asymmetry, while contralateral stimulation either did not modify the motor asymmetry of such individuals or inverted this feature. These data agree with the concept that, in fishes, one eye dominates and more actively provides tracking of the movement of bars, while another eye is a subdominant one. In general, we first found that the use of specific visual stimulation allows one to modify for a long time the behavioral motor asymmetry of the fishes, which, as is known, correlates with the morphofunctional asymmetry of Mauthner neurons (MNs). Visual information that activates MNs influences mostly the ventral dendrites of these neurons; thus, our findings allow us to believe that stimulations, which initiate the optomotor reaction, can serve as an adequate physiological model of natural visual stimulation of MNs (with projection of the respective influences on the ventral dendrites of the above cells). The use of such an experimental paradigm opens up new possibilities for studies of the role of these dendrites in the functions of MNs and of the plasticity of morphofunctional organization of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Korn and D. S. Faber, “The Mauthner cell half a century later: a neurobiological model for decision-making?” Neuron, 47, No. 1, 13–22 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. S. J. Zottoli, “Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish,” J. Exp. Biol., 66, No. 5, 243–254 (1977).

    PubMed  CAS  Google Scholar 

  3. S. J. Zottoli and D. S. Faber, “Properties and distribution of anterior VIII-th nerve excitatory inputs to the goldfish Mauthner cell,” Brain Res., 174, No. 2, 319–323 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. S. J. Zottoli, A. R. Hordes, and D. S. Faber, “Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell,” Brain Res., 401, No. 1, 113–121 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. S. A. Weiss, S. J. Zottoli, S. C. Do, et al., “Correlation of the C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus),” J. Exp. Biol., 209, No. 23, 4788–4801 (2006).

    Article  PubMed  Google Scholar 

  6. Y. Nakajima, “Fine structure of the synaptic endings on the Mauthner cells of the goldfish,” J. Comp. Neurol., 156, No. 2, 375–402 (1974).

    Article  Google Scholar 

  7. J. Diamond and J. Huxley, “The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurons: an analysis of dendritic remote inhibition,” J. Physiol., 194, No. 3, 669–723 (1968).

    PubMed  CAS  Google Scholar 

  8. B. Jakoubek and J. E. Edstrom, “RNA changes in Mauthner axon and myelin sheath after increased functional activity,” J. Neurochem., 12, No. 4, 845–849 (1965).

    Article  PubMed  CAS  Google Scholar 

  9. G. Z. Mikhailova, A. V. Arytyunyan, I. M. Santalova, et al., “Asymmetry of motor behavior of the goldfish in a narrow channel,” Neurophysiology, 37, No. 1, 48–55 (2005).

    Article  Google Scholar 

  10. I. M. Santalova and D. A. Moshkov, “Studies of the contribution of two different afferent inputs to fatigue of goldfish Mauthner neurons,” in: Ultrastructure and Plasticity of Neurons [in Russian], D. A. Moshkov (ed.), Sci. Center for Biol. Res., Acad. Sci. USSR, Pushchino (1990), pp. 91–100.

    Google Scholar 

  11. G. Z. Mikhailova, N. R. Tiras, V. D. Pavlik, et al., “Morphological parameters of Mauthner neurons of goldfish with modified asymmetry of motor behavior,” Neurophysiology, 38, No. 1, 15–26 (2006).

    Article  Google Scholar 

  12. D. A. Moshkov, L. L. Pavlik, N. R. Tiras, et al., “Ultrastructural changes in the mixed synapses of Mauthner neurons related to long-term potentiation and natural modification of the motor function,” Neurophysiology, 35, No. 5, 361–370 (2003).

    Article  Google Scholar 

  13. A. Bisazza and G. Vallortigara, “Rotational basis in mosquitofish (Gambusia hoolbrooki): the role of lateralization and sun-compass navigation,” Laterality, 1, No. 2, 161–175 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. J. G. Canfield and G. J. Rose, “Hierarchical sensory guidance of Mauthner-mediated escape in goldfish (Carrasius auratus) and cichlids (Haplochromis burtoni),” Brain, Behav., Evolut., 48, No. 2, 137–156 (1996).

    CAS  Google Scholar 

  15. Th. Preuss and D. S. Faber, “Central cellular mechanisms underlying temperature-dependent changes in the goldfish startle-escape behavior,” J. Neurosci., 23, No. 13, 5617–5626 (2003).

    PubMed  CAS  Google Scholar 

  16. A. Bisazza, M. Dadda, and C. Cantalupo, “Further evidence for mirror-reversed laterality in lines of fish selected for leftward or rightward turning when facing a predator model,” Behav. Brain Res., 156, No. 1, 165–171 (2005).

    Article  PubMed  Google Scholar 

  17. D. A. Moshkov, Adaptation and Ultrastructure of Neurons [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  18. N. R. Tiras, G. Z. Mikhailova, and D. A. Moshkov, “Effects induced by an actin-polymerizing peptide in goldfish Mauthner neurons,” Neurophysiology, 38, Nos. 5/6, 327–337 (2006).

    Article  CAS  Google Scholar 

  19. J. J. Anderson, “A neural model for visual activation of startle-behavior on fish,” J. Theor. Biol., 131, No. 2, 279–288 (1988).

    Article  Google Scholar 

  20. A. Stefanelli, “The Mauthnerian apparatus in the Ichtyopsida: its nature and function and correlated problems of neurohistogenesis,” Q. Rev. Biol., 26, No. 1, 17–34 (1951).

    Article  PubMed  CAS  Google Scholar 

  21. D. A. Sakharov, “Mauthner giant neurons,” Usp. Sovrem. Biol., 52, No. 4, 112–124 (1961).

    PubMed  CAS  Google Scholar 

  22. R. Hinde, Behavior of Animals. A Synthesis of Ethology and Comparative Psychology [in Russian], Mir, Moscow (1975).

    Google Scholar 

  23. J. R. Cronley-Dillon and W. R. A. Muntz, “The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions,” J. Exp. Biol., 42, No. 3, 481–493 (1965).

    Google Scholar 

  24. S. Anstis, P. Hutahajan, and P. Cavanagh, “Optomotor test for wavelength sensitivity in guppyfish (Poecilia reticulata),” Vis. Res., 38, No. 1, 45–53 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. A. D. Springer, S. S. Easter, and B. W. Agranoff, “The role of the optic tectum in various visually mediated behaviors of goldfish,” Brain Res., 128, No. 3, 393–404 (1977).

    Article  PubMed  CAS  Google Scholar 

  26. T. Roeser and H. Baier, “Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum,” J. Neurosci., 23, No. 9, 3726–3735 (2003).

    PubMed  CAS  Google Scholar 

  27. R. H. H. Kröger, B. Knoblauch, and H.-J. Wagner, “Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher,” J. Exp. Biol., 206, No. 11, 1643–1648 (2003).

    Article  PubMed  Google Scholar 

  28. J. C. Beck, E. Gilland, D. W. Tank, and R. Baker, “Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish,” J. Neurophysiol., 92, No. 10, 3546–3561 (2004).

    Article  PubMed  Google Scholar 

  29. R. Lesley and R. Andrew, Comparative Vertebrate Lateralization, Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  30. V. F. Fokin, “Evolution of the central/peripheral organization of the functional interhemisphere asymmetry,” in: Functional Interhemisphere Asymmetry [in Russian], V. F. Fokin (ed.), Nauchnyi Mir, Moscow (2004), pp. 47–79.

    Google Scholar 

  31. G. Vallortigara, “Comparative neuropsychology of the dual brain: a stroll through left and right animals’ perceptual worlds,” Brain Lang., 73, No. 2, 189–219 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Sh. Shtanchayev, G. Z. Mikhailova, N. R. Tiras or D. A. Moshkov.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, No. 2, pp. 133–145, March–April, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtanchayev, R.S., Mikhailova, G.Z., Dektyareva, N.Y. et al. Effects of optokinetic stimulation on motor asymmetry in the goldfish. Neurophysiology 39, 118–129 (2007). https://doi.org/10.1007/s11062-007-0017-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-007-0017-6

Keywords

Navigation