Skip to main content

Advertisement

Log in

Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs) and application of current immunotherapy for refractory PitNETs remains debated. We aim to evaluate the immune landscape in different lineages of PitNETs and determine the potential role of pituitary transcription factors in reshaping the tumor immune microenvironment (TIME), thus promoting the application of current immunotherapy for aggressive and metastatic PitNETs.

Methods

Immunocyte infiltration and expression patterns of immune checkpoint molecules in different lineages of PitNETs were estimated via in silico analysis and validated using an IHC validation cohort. The correlation between varying immune components with clinicopathological features was assessed in PIT1-lineage PitNETs.

Results

Transcriptome profiles from 210 PitNETs/ 8 normal pituitaries (NPs) and immunohistochemical validations of 77 PitNETs/6 NPs revealed a significant increase in M2-macrophage infiltration in PIT1-lineage PitNETs, compared with the TPIT-lineage, SF1-lineage subsets and NPs. While CD68 + macrophage, CD4 + T cells, and CD8 + T cells were not different among them. Increased M2-macrophage infiltration was associated with tumor volume (p < 0.0001, r = 0.57) in PIT1-lineage PitNETs. Meanwhile, differentially expressed immune checkpoint molecules (PD-L1, PD1, and CTLA-4) were screened and validated in IHC cohorts. The results showed that PD-L1 was highly expressed in PIT1-lineage subsets, and PD-L1 overexpression showed a positive correlation with tumor volume (p = 0.04, r = 0.29) and cavernous sinus invasion (p < 0.0001) in PIT1-lineage PitNETs.

Conclusion

PIT1-lineage PitNETs exhibit a distinct immune profile with enrichment of M2 macrophage infiltration and PD-L1 expression, which may contribute to its clinical aggressiveness. Application of current immune checkpoint inhibitors and M2-targeted immunotherapy might be more beneficial to treat aggressive and metastatic PIT-lineage PitNETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Tritos NA, Miller KK (2023) Diagnosis and management of Pituitary Adenomas: a review. JAMA 329:1386–1398. https://doi.org/10.1001/jama.2023.5444

    Article  CAS  PubMed  Google Scholar 

  2. Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, Reincke M, Johannsson G, Beckers A, Fleseriu M, Giustina A, Wass JAH, Ho KKY (2022) Clinical Biology of the Pituitary Adenoma. Endocr Rev. https://doi.org/10.1210/endrev/bnac010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Asa SL, Mete O, Perry A, Osamura RY (2022) Overview of the 2022 WHO classification of Pituitary Tumors. Endocr Pathol 33:6–26. https://doi.org/10.1007/s12022-022-09703-7

    Article  CAS  PubMed  Google Scholar 

  4. Burman P, Casar-Borota O, Perez-Rivas LG, Dekkers OM (2023) Aggressive pituitary tumors and pituitary carcinomas: from pathology to treatment. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgad098

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yenyuwadee S, Aliazis K, Wang Q, Christofides A, Shah R, Patsoukis N, Boussiotis VA (2022) Immune cellular components and signaling pathways in the tumor microenvironment. Semin Cancer Biol 86:187–201. https://doi.org/10.1016/j.semcancer.2022.08.004

    Article  CAS  PubMed  Google Scholar 

  6. Nie D, Fang Q, Li B, Cheng J, Li C, Gui S, Zhang Y, Zhao P (2021) Research advances on the immune research and prospect of immunotherapy in pituitary adenomas. World J Surg Oncol 19:162. https://doi.org/10.1186/s12957-021-02272-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marques P, Silva AL, López-Presa D, Faria C, Bugalho MJ (2022) The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications. Pituitary 25:363–382. https://doi.org/10.1007/s11102-022-01211-5

    Article  PubMed  Google Scholar 

  8. Ilie MD, Vasiljevic A, Bertolino P, Raverot G (2022) Biological and therapeutic implications of the Tumor Microenvironment in Pituitary Adenomas. Endocr Rev. https://doi.org/10.1210/endrev/bnac024

    Article  Google Scholar 

  9. Han C, Lin S, Lu X, Xue L, Wu ZB (2021) Tumor-Associated Macrophages: New Horizons for Pituitary Adenoma researches. Front Endocrinol 12:785050. https://doi.org/10.3389/fendo.2021.785050

    Article  Google Scholar 

  10. Ilie MD, Vasiljevic A, Jouanneau E, Raverot G (2022) Immunotherapy in aggressive pituitary tumors and carcinomas: a systematic review. Endocrine-related Cancer 29:415–426. https://doi.org/10.1530/erc-22-0037

    Article  CAS  PubMed  Google Scholar 

  11. Wright JJ, Powers AC, Johnson DB (2021) Endocrine toxicities of immune checkpoint inhibitors. Nat Rev Endocrinol. https://doi.org/10.1038/s41574-021-00484-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shalit A, Sarantis P, Koustas E, Trifylli EM, Matthaios D, Karamouzis MV (2023) Predictive biomarkers for Immune-Related Endocrinopathies following Immune checkpoint inhibitors treatment. Cancers 15. https://doi.org/10.3390/cancers15020375

  13. Ilie MD, Villa C, Cuny T, Cortet C, Assie G, Baussart B, Cancel M, Chanson P, Decoudier B, Deluche E, Di Stefano AL, Drui D, Gaillard S, Goichot B, Huillard O, Joncour A, Larrieu-Ciron D, Libe R, Nars G, Vasiljevic A, Raverot G (2022) Real-life efficacy and predictors of response to immunotherapy in pituitary tumors: a cohort study. Eur J Endocrinol 187:685–696. https://doi.org/10.1530/eje-22-0647

    Article  CAS  PubMed  Google Scholar 

  14. Micko AS, Wöhrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg. https://doi.org/10.3171/2014.12.Jns141083. 122 803 – 11

    Article  PubMed  Google Scholar 

  15. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA (2022) The complex role of tumor-infiltrating macrophages. Nat Immunol 23:1148–1156. https://doi.org/10.1038/s41590-022-01267-2

    Article  CAS  PubMed  Google Scholar 

  17. Marques P, Korbonits M (2023) Tumour microenvironment and pituitary tumour behaviour. J Endocrinol Investig 46:1047–1063. https://doi.org/10.1007/s40618-023-02089-1

    Article  CAS  Google Scholar 

  18. Mei Y, Bi WL, Agolia J, Hu C, Giantini Larsen AM, Meredith DM, Al Abdulmohsen S, Bale T, Dunn GP, Abedalthagafi M, Dunn IF (2021) Immune profiling of pituitary tumors reveals variations in immune infiltration and checkpoint molecule expression. https://doi.org/10.1007/s11102-020-01114-3. Pituitary

  19. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, Grossman AB, Balkwill F, Korbonits M (2019) Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun 7172. https://doi.org/10.1186/s40478-019-0830-3

  20. Inoshita N, Nishioka H (2018) The 2017 WHO classification of pituitary adenoma: overview and comments. Brain Tumor Pathol 35:51–56. https://doi.org/10.1007/s10014-018-0314-3

    Article  CAS  PubMed  Google Scholar 

  21. Lu JQ, Adam B, Jack AS, Lam A, Broad RW, Chik CL (2015) Immune Cell infiltrates in Pituitary Adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocrine pathology 26 263 – 72 https://doi.org/10.1007/s12022-015-9383-6

  22. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Dorward N, Grieve J, Mendoza N, Nair R, Muquit S, Grossman AB, Korbonits M (2020) The role of the tumour microenvironment in the angiogenesis of pituitary tumours. Endocrine 70:593–606. https://doi.org/10.1007/s12020-020-02478-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Principe M, Chanal M, Ilie MD, Ziverec A, Vasiljevic A, Jouanneau E, Hennino A, Raverot G, Bertolino P (2020) Immune Landscape of Pituitary Tumors reveals Association between Macrophages and Gonadotroph Tumor Invasion. J Clin Endocrinol Metab 105. https://doi.org/10.1210/clinem/dgaa520

  24. Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, Zhu Q, Zhang WB, Pan YB, Jin J, Bi Y, Wu ZB, Lin S, Lou M (2021) Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics 11:3839–3852. https://doi.org/10.7150/thno.53749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yagnik G, Rutowski MJ, Shah SS, Aghi MK (2019) Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget 10:2212–2223. https://doi.org/10.18632/oncotarget.26775

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sato M, Tamura R, Tamura H, Mase T, Kosugi K, Morimoto Y, Yoshida K, Toda M (2019) Analysis of Tumor Angiogenesis and Immune Microenvironment in non-functional pituitary endocrine tumors. J Clin Med 8. https://doi.org/10.3390/jcm8050695

  27. Yeung JT, Vesely MD, Miyagishima DF (2020) In silico analysis of the immunological landscape of pituitary adenomas. J Neurooncol 147:595–598. https://doi.org/10.1007/s11060-020-03476-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin K, Zhang J, Lin Y, Pei Z, Wang S (2022) Metabolic characteristics and M2 macrophage infiltrates in Invasive Nonfunctioning Pituitary Adenomas. Front Endocrinol 13901884. https://doi.org/10.3389/fendo.2022.901884

  29. Matsuzaki H, Komohara Y, Yano H, Fujiwara Y, Kai K, Yamada R, Yoshii D, Uekawa K, Shinojima N, Mikami Y, Mukasa A (2023) Macrophage colony-stimulating factor potentially induces recruitment and maturation of macrophages in recurrent pituitary neuroendocrine tumors. Microbiol Immunol 67:90–98. https://doi.org/10.1111/1348-0421.13041

    Article  CAS  PubMed  Google Scholar 

  30. Lyu L, Jiang Y, Ma W, Li H, Liu X, Li L, Shen A, Yu Y, Jiang S, Li H, Zhou P, Yin S (2023) Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling. Br J Cancer. https://doi.org/10.1038/s41416-022-02126-5

    Article  PubMed  Google Scholar 

  31. Tang C, Lei X, Xiong L, Hu Z, Tang B (2021) HMGA1B/2 transcriptionally activated-POU1F1 facilitates gastric carcinoma metastasis via CXCL12/CXCR4 axis-mediated macrophage polarization. Cell Death Dis 12:422. https://doi.org/10.1038/s41419-021-03703-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinez-Ordoñez A, Seoane S, Cabezas P, Eiro N, Sendon-Lago J, Macia M, Garcia-Caballero T, Gonzalez LO, Sanchez L, Vizoso F, Perez-Fernandez R (2018) Breast cancer metastasis to liver and lung is facilitated by pit-1-CXCL12-CXCR4 axis. Oncogene 37:1430–1444. https://doi.org/10.1038/s41388-017-0036-8

    Article  CAS  PubMed  Google Scholar 

  33. Martínez-Ordoñez A, Seoane S, Avila L, Eiro N, Macía M, Arias E, Pereira F, García-Caballero T, Gómez-Lado N, Aguiar P, Vizoso F, Perez-Fernandez R (2021) POU1F1 transcription factor induces metabolic reprogramming and breast cancer progression via LDHA regulation. Oncogene 40:2725–2740. https://doi.org/10.1038/s41388-021-01740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48:434–452. https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang P, Wang T, Yang Y, Yu C, Liu N, Yan C (2017) Detection of programmed death ligand 1 protein and CD8 + lymphocyte infiltration in plurihormonal pituitary adenomas: a case report and review of the literatures. Medicine 96:e9056. https://doi.org/10.1097/md.0000000000009056

    Article  PubMed  PubMed Central  Google Scholar 

  36. Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, Zhang X, Matsuba C, Takasumi Y, Ballesteros-Merino C, Fox BA, Barkhoudarian G, Kelly DF, Hoon DSB (2018) The Epigenomic Landscape of Pituitary Adenomas reveals specific alterations and differentiates among Acromegaly, Cushing’s Disease and endocrine-inactive subtypes. Clin cancer research: official J Am Association Cancer Res 24:4126–4136. https://doi.org/10.1158/1078-0432.Ccr-17-2206

    Article  CAS  Google Scholar 

  37. Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, Laws ER Jr, Santagata S, Dunn GP, Dunn IF (2016) Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 7:76565–76576. https://doi.org/10.18632/oncotarget.12088

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang PF, Wang TJ, Yang YK, Yao K, Li Z, Li YM, Yan CX (2018) The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J Neurooncol 139:89–95. https://doi.org/10.1007/s11060-018-2844-2

    Article  CAS  PubMed  Google Scholar 

  39. Turchini J, Sioson L, Clarkson A, Sheen A, Gill AJ (2021) PD-L1 is preferentially expressed in PIT-1 positive pituitary neuroendocrine tumours. Endocr Pathol 32:408–414. https://doi.org/10.1007/s12022-021-09673-2

    Article  CAS  PubMed  Google Scholar 

  40. Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW (2021) Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 20:899–919. https://doi.org/10.1038/s41573-021-00155-y

    Article  CAS  PubMed  Google Scholar 

  41. Maghathe T, Miller WK, Mugge L, Mansour TR, Schroeder J (2020) Immunotherapy and potential molecular targets for the treatment of pituitary adenomas resistant to standard therapy: a critical review of potential therapeutic targets and current developments. J Neurosurg Sci 64:71–83. https://doi.org/10.23736/s0390-5616.18.04419-3

    Article  PubMed  Google Scholar 

  42. Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, Wu K (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17:129. https://doi.org/10.1186/s12943-018-0864-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kemeny HR, Elsamadicy AA, Farber SH, Champion CD, Lorrey SJ, Chongsathidkiet P, Woroniecka KI, Cui X, Shen SH, Rhodin KE, Tsvankin V, Everitt J, Sanchez-Perez L, Healy P, McLendon RE, Codd PJ, Dunn IF, Fecci PE (2020) Targeting PD-L1 initiates effective Antitumor immunity in a murine model of Cushing Disease. Clin cancer research: official J Am Association Cancer Res 26:1141–1151. https://doi.org/10.1158/1078-0432.Ccr-18-3486

    Article  CAS  Google Scholar 

  44. Shum B, Larkin J, Turajlic S (2022) Predictive biomarkers for response to immune checkpoint inhibition. Semin Cancer Biol 79:4–17. https://doi.org/10.1016/j.semcancer.2021.03.036

    Article  CAS  PubMed  Google Scholar 

  45. Suteau V, Collin A, Menei P, Rodien P, Rousselet MC, Briet C (2020) Expression of programmed death-ligand 1 (PD-L1) in human pituitary neuroendocrine tumor. Cancer Immunol immunotherapy: CII 69:2053–2061. https://doi.org/10.1007/s00262-020-02611-x

    Article  CAS  PubMed  Google Scholar 

  46. [Consensus on the immunohistochemical tests of PD-L1 in solid tumors (2021 version)]. Zhonghua Bing Li Xue Za Zhi 50 710–718. https://doi.org/10.3760/cma.j.cn112151-20210228-00172

Download references

Funding

This research was funded by the Human Provincial Natural Science Foundation of China (2021JJ40868) and the National Natural Science Foundation of China (no.82001738).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mei Luo and Rui Tang. The first draft of the manuscript was written by Mei Luo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rui Tang or Haijun Wang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Research involving human participants, their data or biological materials were reviewed and approved by Medical Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University (protocol number [2022] 229-1).

Consent to participant

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Tang, R. & Wang, H. Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset. J Neurooncol 163, 663–674 (2023). https://doi.org/10.1007/s11060-023-04382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04382-8

Keywords

Navigation