Skip to main content

Advertisement

Log in

MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

The purpose of this study is to map spatial metabolite differences across three molecular subgroups of glial tumors, defined by the IDH1/2 mutation and 1p19q-co-deletion, using magnetic resonance spectroscopy. This work reports a new MR spectroscopy based classification algorithm by applying a radiomics analytics pipeline.

Materials

65 patients received anatomical and chemical shift imaging (5 × 5 × 20 mm voxel size). Tumor regions were segmented and registered to corresponding spectroscopic voxels. Spectroscopic features were computed (n = 860) in a radiomic approach and selected by a classification algorithm. Finally, a random forest machine-learning model was trained to predict the molecular subtypes.

Results

A cluster analysis identified three robust spectroscopic clusters based on the mean silhouette widths. Molecular subgroups were significantly associated with the computed spectroscopic clusters (Fisher’s Exact test p < 0.01). A machine-learning model was trained and validated by public available MRS data (n = 19). The analysis showed an accuracy rate in the Random Forest model by 93.8%.

Conclusions

MR spectroscopy is a robust tool for predicting the molecular subtype in gliomas and adds important diagnostic information to the preoperative diagnostic work-up of glial tumor patients. MR-spectroscopy could improve radiological diagnostics in the future and potentially influence clinical and surgical decisions to improve individual tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Crocetti E, Trama A, Stiller C et al (2012) Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer 48:1532–1542

    Article  PubMed  Google Scholar 

  2. Ostrom QT, Bauchet L, Davis FG et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology 16:896–913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16(Suppl 4):iv1–iv63

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brat DJ, Verhaak RGW, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    Article  PubMed  CAS  Google Scholar 

  5. Wiestler B, Capper D, Sill M et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128:561–571

    Article  PubMed  CAS  Google Scholar 

  6. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:1–18

    Article  Google Scholar 

  7. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Naeini KM, Pope WB, Cloughesy TF et al (2013) Identifying the mesenchymal molecular subtype of glioblastoma using quantitative resonance images. Neuro-Oncology 15:626–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Heiland DH, Demerath T, Kellner E, Kiselev VG, Pfeifer D, Schnell O, Staszewski O, Urbach H, Weyerbrock A, Mader I (2016) Molecular differences between cerebral blood volume and vessel size in glioblastoma multiforme. Oncotarget. https://doi.org/10.18632/oncotarget.11522

    Article  PubMed  PubMed Central  Google Scholar 

  10. Heiland DH, Demerath T, Haaker JG et al (2017) Integrative diffusion-weighted imaging and radiogenomic network analysis of glioblastoma multiforme. Sci Rep 7:43523

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pope WB, Mirsadraei L, Lai A et al (2012) Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. Am J Neuroradiol 33:1059–1064

    Article  PubMed  CAS  Google Scholar 

  12. Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918

    Article  PubMed  Google Scholar 

  13. Zinn PO, Mahajan B, Majadan B, Sathyan P, Singh SK, Majumder S, Jolesz FA, Colen RR (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 6:e25451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling A von, Bendszus M, Wiestler B (2015) IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 5:16238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Heiland DH, Wörner J, Gerrit Haaker J et al (2017) The integrative metabolomic-transcriptomic landscape of glioblastome multiforme. Oncotarget 8:49178–49190

    PubMed  PubMed Central  Google Scholar 

  16. Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Baslow MH (2000) Functions of N-acetyl-l-aspartate and N-acetyl-l-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J Neurochem 75:453–459

    Article  PubMed  CAS  Google Scholar 

  18. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    Article  PubMed  CAS  Google Scholar 

  19. Freeman JJ (1996) Regulatory mechanisms of choline production. Life Sci 58:1921–1927

    Article  PubMed  CAS  Google Scholar 

  20. Lehnhardt FG, Rhn G, Ernestus RI, Grne M, Hoehn M (2001) 1H-and 31P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR Biomed 14:307–317

    Article  PubMed  CAS  Google Scholar 

  21. Wise DR, DeBerardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787

    Article  PubMed  Google Scholar 

  22. van Lith SAM, Navis AC, Verrijp K, Niclou SP, Bjerkvig R, Wesseling P, Tops B, Molenaar R, van Noorden CJF, Leenders WPJ (2014) Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? Biochim Biophys Acta 1846:66–74

    PubMed  Google Scholar 

  23. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121:799–817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Blanc EM, Jallageas M, Recasens M, Guiramand J (1999) Potentiation of glutamatergic agonist-induced inositol phosphate formation by basic fibroblast growth factor is related to developmental features in hippocampal cultures: neuronal survival and glial cell proliferation. Eur J Neurosci 11:3377–3386

    Article  PubMed  CAS  Google Scholar 

  25. Callot V, Galanaud D, Le Fur Y, Confort-Gouny S, Ranjeva J-P, Cozzone PJ (2008) 1H MR spectroscopy of human brain tumours: a practical approach. Eur J Radiol 67:268–274

    Article  PubMed  Google Scholar 

  26. Heiland DH, Mader I, Schlosser P, Pfeifer D, Carro MS, Lange T, Schwarzwald R, Vasilikos I, Urbach H, Weyerbrock A (2016) Integrative network-based analysis of magnetic resonance spectroscopy and genome wide expression in glioblastoma multiforme. Sci Rep 6:29052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Scheenen TWJ, Klomp DWJ, Wijnen JP, Heerschap A (2008) Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med 59:1–6

    Article  PubMed  CAS  Google Scholar 

  28. Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, Schlegel U, Schramm J, Wiestler OD (2004) Oligodendroglial tumors: refinement of candidate regions on chromosome Arm 1p and correlation of 1p/19q status with survival. Brain Pathol 14:121–130

    Article  PubMed  CAS  Google Scholar 

  29. Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880

    Article  PubMed  CAS  Google Scholar 

  30. Rosenstein BS, West CM, Bentzen SM et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89:709–713

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    Article  PubMed  CAS  Google Scholar 

  32. Godlewski J, Ferrer-Luna R, Rooj AK et al (2017) MicroRNA signatures and molecular subtypes of glioblastoma: the role of extracellular transfer. Stem Cell Rep 8:1497–1505

    Article  CAS  Google Scholar 

  33. Heiland DH, Gaebelein A, Boerries M et al (2018) Microenvironmental-derived regulation of HIF-signaling drives transcriptional heterogeneity in glioblastoma multiforme. Mol Cancer Res. https://doi.org/10.1158/1541-7786.MCR-17-0680

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

DHH is funded by the German Cancer Society (Seeding Grand TII) and by the Müller-Fahnenberg-Stiftung, Freiburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Henrik Heiland.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declaim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diamandis, E., Gabriel, C.P.S., Würtemberger, U. et al. MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification. J Neurooncol 139, 431–440 (2018). https://doi.org/10.1007/s11060-018-2881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2881-x

Keywords

Navigation