Skip to main content
Log in

Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Venkatesh T, Suresh PS, Tsutsumi R (2015) Non-coding RNAs: functions and applications in endocrine-related cancer. Mol Cell Endocrinol 416(1):1–21

    Google Scholar 

  2. Sumazin P et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Can Res 147(2):370–381

    CAS  Google Scholar 

  3. Chen Y, Li C, Tan C, Liu X (2016) Circular RNAs: a new frontier in the study of human diseases. J Med Genet 53(6):359–365

    Article  CAS  PubMed  Google Scholar 

  4. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2013) Starbase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale clip-seq data. Nucleic Acids Res 42(D1): 92–97

    Article  Google Scholar 

  5. Ju YP, Lee JE, Park et al (2014) Roles of long non-coding RNAs on tumorigenesis and glioma development. Brain Tumor Res Treat (1):1–6

  6. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) CeRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riquelme I, Ili C, Roa JC, Brebi P (2016) Long non-coding RNAs in gastric cancer: mechanisms and potential applications. Oncotarget. https://doi.org/10.18632/oncotarget.9396

    Google Scholar 

  8. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272 –283

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shao T, Wu A, Chen J, Chen H, Lu J, Bai J et al (2015) Identification of module biomarkers from the dysregulated ceRNA-ceRNA interaction network in lung adenocarcinoma. Mol Biosyst 11(11):3048–3058

    Article  CAS  PubMed  Google Scholar 

  12. Dou C, Cao Z, Yang B, Ding N, Hou T, Luo F et al (2016) Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 6:21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang PF, Liu N, Song HW, Yao K, Jiang T, Li SW et al (2016) Idh-1r132h mutation status in diffuse glioma patients: implications for classification. Oncotarget 7(21):31393–31400

    PubMed  PubMed Central  Google Scholar 

  14. Zou P, Xu H, Chen P, Yan Q, Zhao L, Zhao P et al (2013) Idh1/idh2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS ONE 8(7):e68782–e68782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Wang Z, Wang Y, Zhao Z, Zhang J, Lu J et al (2016) Identification and characterization of lncRNA mediated transcriptional dysregulation dictates lncRNA roles in glioblastoma. Oncotarget 19(29):45027–45041

    Google Scholar 

  16. Han L, Zhang K, Shi Z, Zhang J et al (2012) LncRNA profile of glioblastoma reveals the potential role of lncRNAs, in contributing to glioblastoma pathogenesis. Int J Oncol 40(6):2004–2012

    CAS  PubMed  Google Scholar 

  17. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al (2013) String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):808–815

    Google Scholar 

  18. Kanehisa M, Araki M, Goto S et al (2008) Kegg for linking genomes to life and the environment. Nucleic Acids Res 36(1):d480–d484

    Google Scholar 

  19. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P et al (2012) High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov 2(1):82–93

    Article  CAS  PubMed  Google Scholar 

  20. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):1–10

    Article  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao BX, Cai T, Olyarchuk J, Wei (2005) L: Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  23. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  24. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trapnell C, Pachter L, Salzberg SI (2009) Discovering splice junctions with RNA-seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin M, Zhang T, Liu C, Badeaux M et al (2014) MiRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res 74(15):4183–4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng CJ, Bahal R, Babar IA et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518(7537):107–110

    Article  CAS  PubMed  Google Scholar 

  28. Tay Y, Kats L, Salmena L, Weiss D et al (2011) Coding-independent regulation of the tumor suppressor pten by competing endogenous mRNAs. Cell 147(2):344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan Y, Zhang L, Jiang Y, Xu T, Mei Q, Wang H et al (2015) LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human glioblastoma multiforme. J Cancer Res Clin Oncol 141(5):827–838

    Article  CAS  PubMed  Google Scholar 

  30. Johnstone KA, Dubose AJ, Futtner CR, Elmore MD, Brannan CI, Resnick JL (2006) A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for angelman syndrome imprinting defects. Hum Mol Genet 15(3):393–404

    Article  CAS  PubMed  Google Scholar 

  31. Sutherland HF, Wadey R, Mckie JM, Taylor C, Atif U, Johnstone KA et al (1996) Identification of a novel transcript disrupted by a balanced translocation associated with digeorge syndrome. Am J Hum Genet 59(1):23–31

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Willingham AT, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573

    Article  CAS  PubMed  Google Scholar 

  33. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  34. Zhao ZJ, Shen J (2015) Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol 4(3):501–589

    Google Scholar 

  35. Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5(1):385–393

    Google Scholar 

  36. Le TD, Zhang J, Liu L, Li J (2016) Computational methods for identifying miRNA sponge interactions. Brief Bioinform 18(4):577–590

    Google Scholar 

  37. Cao Y, Wang P, Ning S, Xiao W, Xiao B, Li X (2016) Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network. Oncotarget 5(27):41737–41747

    Google Scholar 

  38. Kiang MY, Zhang XQ, Leung KK (2015) Long non-coding RNAs: the key players in glioma pathogenesis. Cancers 7(3):1406–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Sichuan province science and technology support Plan Nos. 2012S20152 and 0040205301911.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Shu or Mao Qing.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Jiaoming, L., Xiang, W. et al. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma. J Neurooncol 137, 493–502 (2018). https://doi.org/10.1007/s11060-018-2757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2757-0

Keywords

Navigation