Skip to main content

Advertisement

Log in

Myo-inositol concentration in MR spectroscopy for differentiating high grade glioma from primary central nervous system lymphoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

It is sometimes difficult to distinguish gliomas from other tumors on routine imaging. In this study, we assessed whether 3-T magnetic resonance spectroscopy (MRS) with LCModel software might be useful for discriminating glioma from other brain tumors, such as primary central nervous system lymphomas (PCNSLs) and metastatic tumors. A total of 104 cases of brain tumor (66 gliomas, 20 PCNSLs, 6 metastatic tumors, 12 other tumors) were preoperatively investigated with short echo time (35 ms) single-voxel 3-T MRS. LCModel software was used to evaluate differences in the absolute concentrations of choline, N-acetylaspartate, N-acetylaspartylglutamate, glutamate + glutamine, myo-inositol (mIns), and lipid. mIns levels were significantly increased in high-grade glioma (HGG) compared with PCNSL (p < 0.001). In multivariate logistic regression analysis, mIns was the best marker for differentiating HGG from PCNSL (p < 0.0001, odds ratio 1.9927, 95% confidence interval 1.3628–3.2637). Conventional MRS detection of mIns resulted in a high diagnostic accuracy (sensitivity, 64%; specificity, 90%; area under the receiver operator curve, 0.80) for HGG. The expression of inositol 3-phosphate synthase (ISYNA1) was significantly higher in gliomas than in PCNSLs (p < 0.05), suggesting that the increased level of mIns in glioma is due to high expression of ISYNA1, the rate-limiting enzyme in the mIns-producing pathway. In conclusion, noninvasive analysis of mIns using single-voxel MRS may be useful in distinguishing gliomas from other brain tumors, particularly PCNSLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cr:

Creatine

FWHM:

Full width at half maximum

Gln:

Glutamine

Glu:

Glutamate

Glx:

Glutamine + glutamate

HGG:

High-grade glioma

IDH:

Isocitrate dehydrogenase

ISYNA1:

Inositol 3-phosphate synthase

Lip:

Lipid

mIns:

Myo-inositol

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NAA:

N-Acetylaspartate

NAAG:

N-Acetylaspartylglutamate

PCNSL:

Primary central nervous system lymphoma

SNR:

Signal-to-noise ratio

2HG:

2-Hydroxyglutarate

References

  1. Stupp R, Pavlidis N, Jelic S (2005) ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of malignant glioma. Ann Oncol 16 Suppl 1: i64–i65. https://doi.org/10.1093/annonc/mdi834

    Article  PubMed  Google Scholar 

  2. Stupp R (2007) Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 18(Suppl 2): ii69–ii70. https://doi.org/10.1093/annonc/mdm044

    PubMed  Google Scholar 

  3. Morris PG, Abrey LE (2009) Therapeutic challenges in primary CNS lymphoma. Lancet Neurol 8:581–592. https://doi.org/10.1016/s1474-4422(09)70091-2

    Article  CAS  PubMed  Google Scholar 

  4. Arrieta O, Saavedra-Perez D, Kuri R, Aviles-Salas A, Martinez L, Mendoza-Posada D, Castillo P, Astorga A, Guzman E, De la Garza J (2009) Brain metastasis development and poor survival associated with carcinoembryonic antigen (CEA) level in advanced non-small cell lung cancer: a prospective analysis. BMC Cancer 9:119. https://doi.org/10.1186/1471-2407-9-119

    Article  PubMed  PubMed Central  Google Scholar 

  5. Christensen TD, Spindler KL, Palshof JA, Nielsen DL (2016) Systematic review: brain metastases from colorectal cancer—incidence and patient characteristics. BMC Cancer 16:260. https://doi.org/10.1186/s12885-016-2290-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haldorsen IS, Krossnes BK, Aarseth JH, Scheie D, Johannesen TB, Mella O, Espeland A (2007) Increasing incidence and continued dismal outcome of primary central nervous system lymphoma in Norway 1989–2003 : time trends in a 15-year national survey. Cancer 110:1803–1814. https://doi.org/10.1002/cncr.22989

    Article  PubMed  Google Scholar 

  7. Guo AC, MacFall JR, Provenzale JM (2002) Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal-appearing white matter. Radiology 222:729–736. https://doi.org/10.1148/radiol.2223010311

    Article  PubMed  Google Scholar 

  8. Weber MA, Zoubaa S, Schlieter M, Juttler E, Huttner HB, Geletneky K, Ittrich C, Lichy MP, Kroll A, Debus J, Giesel FL, Hartmann M, Essig M (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906. https://doi.org/10.1212/01.wnl.0000219767.49705.9c

    Article  CAS  PubMed  Google Scholar 

  9. Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M, Takaba J, Tominaga A, Hanaya R, Yoshioka H, Hama S, Ito Y, Kajiwara Y, Yahara K, Saito T, Thohar MA (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991. https://doi.org/10.1148/radiol.2353031338

    Article  PubMed  Google Scholar 

  10. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407. https://doi.org/10.1148/radiology.161.2.3763909

    Article  PubMed  Google Scholar 

  11. Yamashita K, Hiwatashi A, Togao O, Kikuchi K, Kitamura Y, Mizoguchi M, Yoshimoto K, Kuga D, Suzuki SO, Baba S, Isoda T, Iwaki T, Iihara K, Honda H (2016) Diagnostic utility of intravoxel incoherent motion mr imaging in differentiating primary central nervous system lymphoma from glioblastoma multiforme. J Magn Reson Imaging 44:1256–1261. https://doi.org/10.1002/jmri.25261

    Article  PubMed  Google Scholar 

  12. Jiang S, Yu H, Wang X, Lu S, Li Y, Feng L, Zhang Y, Heo HY, Lee DH, Zhou J, Wen Z (2016) Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 T. Eur Radiol 26:64–71. https://doi.org/10.1007/s00330-015-3805-1

    Article  PubMed  Google Scholar 

  13. Aburano H, Ueda F, Yoshie Y, Matsui O, Nakada M, Hayashi Y, Gabata T (2015) Differences between glioblastomas and primary central nervous system lymphomas in 1H-magnetic resonance spectroscopy. Jpn J Radiol 33:392–403. https://doi.org/10.1007/s11604-015-0430-5

    Article  CAS  PubMed  Google Scholar 

  14. Yamasaki F, Takayasu T, Nosaka R, Amatya VJ, Doskaliyev A, Akiyama Y, Tominaga A, Takeshima Y, Sugiyama K, Kurisu K (2015) Magnetic resonance spectroscopy detection of high lipid levels in intraaxial tumors without central necrosis: a characteristic of malignant lymphoma. J Neurosurg 122:1370–1379. https://doi.org/10.3171/2014.9.jns14106

    Article  CAS  PubMed  Google Scholar 

  15. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Article  CAS  PubMed  Google Scholar 

  16. Nagashima H, Tanaka K, Sasayama T, Irino Y, Sato N, Takeuchi Y, Kyotani K, Mukasa A, Mizukawa K, Sakata J, Yamamoto Y, Hosoda K, Itoh T, Sasaki R, Kohmura E (2016) Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro-oncology 18:1559–1568. https://doi.org/10.1093/neuonc/now090

    PubMed  PubMed Central  Google Scholar 

  17. Graveron-Demilly D (2014) Quantification in magnetic resonance spectroscopy based on semi-parametric approaches. MAGMA 27:113–130

    Article  PubMed  Google Scholar 

  18. Tanaka K, Sasayama T, Mizukawa K, Takata K, Sulaiman NS, Nishihara M, Kohta M, Sasaki R, Hirose T, Itoh T, Kohmura E (2015) Combined IDH1 mutation and MGMT methylation status on long-term survival of patients with cerebral low-grade glioma. Clin Neurol Neurosurg 138:37–44. https://doi.org/10.1016/j.clineuro.2015.07.019

    Article  PubMed  Google Scholar 

  19. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, Kyotani K, Mizowaki T, Imahori T, Ejima Y, Masui K, Gini B, Yang H, Hosoda K, Sasaki R, Mischel PS, Kohmura E (2015) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 125:1591–1602. https://doi.org/10.1172/jci78239

    Article  PubMed  PubMed Central  Google Scholar 

  20. Berridge MJ, Lipp P, Bootman MD (2000) Signal transduction. The calcium entry pas de deux. Science 287:1604–1605

    Article  CAS  PubMed  Google Scholar 

  21. Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306:2101–2105. https://doi.org/10.1126/science.1103344

    Article  CAS  PubMed  Google Scholar 

  22. Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114. https://doi.org/10.1126/science.1078068

    Article  CAS  PubMed  Google Scholar 

  23. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  CAS  PubMed  Google Scholar 

  24. Haris M, Cai K, Singh A, Hariharan H, Reddy R (2011) In vivo mapping of brain myo-inositol. Neuroimage 54:2079–2085. https://doi.org/10.1016/j.neuroimage.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  25. Castillo M, Smith JK, Kwock L (2000) Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR 21:1645–1649

    CAS  PubMed  Google Scholar 

  26. Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U (2008) Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241. https://doi.org/10.1002/nbm.1186

    Article  CAS  PubMed  Google Scholar 

  27. Koguchi T, Tanikawa C, Mori J, Kojima Y, Matsuda K (2016) Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway. Int J Oncol 48:2415–2424. https://doi.org/10.3892/ijo.2016.3456

    Article  CAS  PubMed  Google Scholar 

  28. Seelan RS, Lakshmanan J, Casanova MF, Parthasarathy RN (2009) Identification of myo-inositol-3-phosphate synthase isoforms: characterization, expression, and putative role of a 16-kDa gamma(c) isoform. J Biol Chem 284:9443–9457. https://doi.org/10.1074/jbc.M900206200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei L, Hong S, Yoon Y, Hwang SN, Park JC, Zhang Z, Olson JJ, Hu XP, Shim H (2012) Early prediction of response to Vorinostat in an orthotopic rat glioma model. NMR Biomed 25:1104–1111. https://doi.org/10.1002/nbm.2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisenberg F Jr, Parthasarathy R (1987) Measurement of biosynthesis of myo-inositol from glucose 6-phosphate. Methods Enzymol 141:127–143

    Article  CAS  PubMed  Google Scholar 

  31. Mora P, Majos C, Castaner S, Sanchez JJ, Gabarros A, Muntane A, Aguilera C, Arus C (2014) (1)H-MRS is useful to reinforce the suspicion of primary central nervous system lymphoma prior to surgery. Eur Radiol 24:2895–2905. https://doi.org/10.1007/s00330-014-3308-5

    Article  PubMed  Google Scholar 

  32. Kimura T, Sako K, Gotoh T, Tanaka K, Tanaka T (2001) In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR Biomed 14:339–349

    Article  CAS  PubMed  Google Scholar 

  33. Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA (2007) Linear discriminant analysis of brain tumour (1)H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR Biomed 20:763–770. https://doi.org/10.1002/nbm.1147

    Article  CAS  PubMed  Google Scholar 

  34. Choi C, Ganji SK, DeBerardinis RJ, Dimitrov IE, Pascual JM, Bachoo R, Mickey BE, Malloy CR, Maher EA (2011) Measurement of glycine in the human brain in vivo by 1H-MRS at 3T: application in brain tumors. Magn Reson Med 66:609–618. https://doi.org/10.1002/mrm.22857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate those at the Brain Tumor Translational Resource at Kobe University for access to biospecimens and for biorepository support.

Funding

K. Tanaka is supported by grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology (26462181), Takeda Science Foundation and Mochida Memorial Foundation for Medical and Pharmaceutical Research. T. Sasayama, K. Hosoda and E. Kohmura are supported by grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology (25462258, 15K10302 and 25293309, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sasayama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This study was approved by the ethics review boards of our institutions (approval numbers: #1497 for MRS; #1579 for use of tumor samples).

Informed consent

Informed consent was obtained from all patients prior to their inclusion in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagashima, H., Sasayama, T., Tanaka, K. et al. Myo-inositol concentration in MR spectroscopy for differentiating high grade glioma from primary central nervous system lymphoma. J Neurooncol 136, 317–326 (2018). https://doi.org/10.1007/s11060-017-2655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2655-x

Keywords

Navigation