Skip to main content
Log in

Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Countless therapeutic strategies have been explored over many decades to prevent or slow the progression of glioblastoma. Despite radical changes in radiation management in other malignancies, there have been no major advances in the radiotherapeutic approach to glioblastoma in over 30 years. Past hopes to overcome inherent radioresistance with escalating doses have been met with frustration. However, prior clinical trials were performed before temozolomide, a radiosensitizer, altered the standard of care and this has renewed interest in dose escalation. Immunotherapy has led to further excitement, given the substantial responses that have been observed in other cancers when combined with high-dose radiation. In addition, advances in molecular profiling and neuroimaging have created new opportunities to improve patient selection for the most appropriate course of treatment. In this review, we outline past attempts to utilize radiosurgery in glioblastoma and focus on the potential to reintroduce this modality of dose escalation in the setting of modern and emerging systemic agents, molecular studies and imaging analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walker MD, Strike TA, Sheline GE (1979) An analysis of dose–effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    Article  CAS  PubMed  Google Scholar 

  2. Roa W et al (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22(9):1583–1588

    Article  CAS  PubMed  Google Scholar 

  3. Roa W et al (2015) International atomic energy agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 33(35):4145–4150

    Article  PubMed  Google Scholar 

  4. Minniti G et al (2015) Standard (60 Gy) or short-course (40 Gy) irradiation plus concomitant and adjuvant temozolomide for elderly patients with glioblastoma: a propensity-matched analysis. Int J Radiat Oncol Biol Phys 91(1):109–115

    Article  CAS  PubMed  Google Scholar 

  5. Amelio D et al (2010) Intensity-modulated radiation therapy in newly diagnosed glioblastoma: a systematic review on clinical and technical issues. Radiother Oncol 97(3):361–369

    Article  PubMed  Google Scholar 

  6. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl Med 352:987–996

    Article  CAS  Google Scholar 

  7. Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  8. Loeffler JS, Alexander E, Shea M, Wen PY, Fine HA, Kooy HM, Black PM (1992) Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10:1379–1385

    CAS  PubMed  Google Scholar 

  9. Mehta MP, Masciopinto J, Rozental J, Levin A, Chappell R, Bastin K, Miles J, Turski P, Kubsad S, Mackie T, Kinsella T (1994) Stereotactic radiosurgery for glioblastoma multiforme: report of a prospective study evaluating prognostic factors and analyzing long-term survival advantage. Int J Radiat Oncol Biol Phys 30(3):541–549

    Article  CAS  PubMed  Google Scholar 

  10. Buatti JM, Friedman WA, Bova FJ, Mendenhall WM (1995) Linac radiosurgery for high-grade gliomas: the university of Florida experience. Int J Radiat Oncol Biol Phys 32(1):205–210

    Article  CAS  PubMed  Google Scholar 

  11. Sarkaria JN, Mehta MP, Loeffler JS, Buatti JM, Chappell RJ, Levin AB, Alexander E, Friedman WA, Kinsella TJ (1995) Radiosurgery in the initial management of malignant gliomas survival comparison with the RTOG recursive partitioning analysis. Int J Radiat Oncol Biol Phys 32(4):931–941

    Article  CAS  PubMed  Google Scholar 

  12. Souhami L et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of radiation therapy oncology group 93–05 protocol. Int J Rad Oncol Biol Phys 60(3):853–860

    Article  Google Scholar 

  13. Gannett D et al (1995) Stereotactic radiosurgery as an adjunct to surgery and external beam radiotherapy in the treatment of patients with malignant gliomas. Int J Rad Oncol Biol Phys 33(2):461–468

    Article  CAS  Google Scholar 

  14. Kondziolka D et al (1997) Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41(4):776–785

    Article  CAS  PubMed  Google Scholar 

  15. Shenouda G et al (1997) Radiosurgery and accelerated radiotherapy for patients with glioblastoma. Can J Neurol Sci 24(02):110–115

    Article  CAS  PubMed  Google Scholar 

  16. Shrieve DC, Alexander E, Black PM, Wen PY, Fine HA, Kooy HM, Loeffler JS (1999) Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg 90:72–77

    Article  CAS  PubMed  Google Scholar 

  17. Nwokedi EC et al (2002) Gamma knife stereotactic radiosurgery for patients with glioblastoma multiforme. Neurosurgery 50(1):41–47

    PubMed  Google Scholar 

  18. Cho KH et al (2004) Stereotactic radiosurgery versus fractionated stereotactic radiotherapy boost for patients with glioblastoma multiforme. Technol Cancer Res Treat 3(1):41–49

    Article  PubMed  Google Scholar 

  19. Hsieh PC et al (2005) Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 57:684–692

    Article  PubMed  Google Scholar 

  20. Cardinale R et al (2006) A phase II trial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme: RTOG 0023. Int J Radiat Oncol Biol Phys 65(5):1422–1428

    Article  PubMed  Google Scholar 

  21. Lipani JD et al (2008) Survival following CyberKnife radiosurgery and hypofractionated radiotherapy for newly diagnosed glioblastoma multiforme. Technol Cancer Res Treat 7(3):249–255

    Article  PubMed  Google Scholar 

  22. Pouratian N et al (2009) Gamma knife radiosurgery after radiation therapy as an adjunctive treatment for glioblastoma. J Neurooncol 94(3):409–418

    Article  CAS  PubMed  Google Scholar 

  23. Larson DA, Gutin PH, McDermott M, Lamborn K et al (1996) Gamma knife for glioma: selection factors and survival. Int J Radiat Oncol Biol Phys 36(5):1045–1053

    Article  CAS  PubMed  Google Scholar 

  24. Tsien CI et al (2012) Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma. Clin Cancer Res 18(1):273–279

    Article  CAS  PubMed  Google Scholar 

  25. Shaw E, Scott C, Souhami L, Dinapoli R, Bahary JP, Kline R et al (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol 90-05. Int J Radiat Oncol Biol Phys 34(3):647–654

    Article  CAS  PubMed  Google Scholar 

  26. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 47(2):291–298

    Article  CAS  PubMed  Google Scholar 

  27. Park JL, Suh JH, Barnett GH, Reddy CA, Peereboom DM, Stevens GHJ, Cohen BH (2000) Survival after stereotactic radiosurgery for recurrent glioblastoma multiforme. J of Radiosurg 3(4):169–175

    Article  Google Scholar 

  28. Mahajan A, McCutcheon IE, Suki D, Chang EL, Hassenbusch SJ, Weinberg, JS et al (2005) Case-control study of stereotactic radiosurgery for recurrent glioblastoma multiforme. J Neurosurg 103(2):210–217

    Article  PubMed  Google Scholar 

  29. Kong DS et al (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112(9):2046–2051

    Article  PubMed  Google Scholar 

  30. Patel M, Siddiqui F, Jin JY, Mikkelsen T, Rosenblum M, Movsas B, Ryu S (2009) Salvage reirradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neurooncol 92(2):185–191

    Article  PubMed  Google Scholar 

  31. Bokstein F et al (2016) Stereotactic radiosurgery (SRS) in high-grade glioma: judicious selection of small target volumes improves results. J Neurooncol 126(3):551–557

    Article  PubMed  Google Scholar 

  32. Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Camphausen K et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993

    CAS  PubMed  Google Scholar 

  34. Blanquicett C (2005) Antitumor efficacy of capecitabine and celecoxib in irradiated and lead-shielded, contralateral Human BxPC-3 pancreatic cancer xenografts. Clin Implic Abscopal Eff 11(24):8773–8781

    CAS  Google Scholar 

  35. Demaria S et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. 58(3):862–870

  36. Dewan MZ et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shiraishi K et al (2008) Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1α. Clin Cancer Res 14(4):1159–1166

    Article  CAS  PubMed  Google Scholar 

  38. Ehlers G, Fridman M (1973) Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol 46(543):220–222

    Article  CAS  PubMed  Google Scholar 

  39. Rees GJ, Ross CM (1983) Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol 56(661):63–66

    Article  CAS  PubMed  Google Scholar 

  40. Ohba K et al (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43(4):575–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wersäll PJ et al (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45(4):493–497

    Article  PubMed  Google Scholar 

  42. Postow MA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Drake CG, EJ Lipson, Brahmer JR (2013) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11(1):24–37

    Article  PubMed  PubMed Central  Google Scholar 

  45. Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell. Lung Cancer 373(17):1627–1639

    CAS  Google Scholar 

  46. Silver DJ et al (2016) The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro Oncol 18(2):153–159

    Article  PubMed  Google Scholar 

  47. Andaloussi AE (2006) An increase in CD4+ CD25+ FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 8(3):234–243

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fecci PE et al (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Cell 66(6):3294–3302

    CAS  Google Scholar 

  49. Raychaudhuri B et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599

    Article  PubMed  PubMed Central  Google Scholar 

  50. Raychaudhuri B et al (2015) Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neurooncol 122(2):293–301

    Article  CAS  PubMed  Google Scholar 

  51. Dubinski D et al (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neurooncol 18:807–818

    Google Scholar 

  52. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    Article  CAS  PubMed  Google Scholar 

  54. Nduom EK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neurooncol 18(2):195–205

    Google Scholar 

  55. Brahmer J et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non–small-cell. Lung Cancer 373(2):123–135

    CAS  Google Scholar 

  56. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  57. Golden EB et al (2015) Local radiotherapy and granulocyte–macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803

    Article  CAS  PubMed  Google Scholar 

  58. Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2(153.10):3389

    Google Scholar 

  59. Siva S et al (2015) Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 356(1):82–90

    Article  CAS  PubMed  Google Scholar 

  60. Schaue D et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310

    Article  CAS  PubMed  Google Scholar 

  61. Lugade AA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523

    Article  CAS  PubMed  Google Scholar 

  62. Diehn M, Clarke MF (2006) Cancer stem cells and radiotherapy. New insights into tumor radioresistance. J Natl Cancer Inst 98(24):1755–1757

    Article  PubMed  Google Scholar 

  63. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    Article  PubMed  Google Scholar 

  64. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8(7):545–554

    Article  CAS  PubMed  Google Scholar 

  65. Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745

    Article  CAS  PubMed  Google Scholar 

  66. Stupp R et al (2012) NovoTTF-100 A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202

    Article  PubMed  Google Scholar 

  67. Stupp R et al (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314(23):2535–2543

    Article  CAS  PubMed  Google Scholar 

  68. Yanagihara TK, Wang TJ (2014) Diffusion-weighted imaging of the brain for glioblastoma: implications for radiation oncology. Appl Radiat Oncol Dec:5–13

  69. Khayal IS et al (2010) Evaluation of diffusion parameters as early biomarkers of disease progression in glioblastoma multiforme. Neuro Oncol 12(9):908–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pope WB et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment 1. Radiology 252(1):182–189

    Article  PubMed  Google Scholar 

  71. Pope WB et al (2012) Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center study. J Neurooncol 108(3):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hamstra DA et al (2008) Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 26(20):3387–3394

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hamstra DA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 102(46):16759–16764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moffat BA et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102(15):5524–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cha J et al (2013) Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression. Eur Radiol 23(3):879–886

    Article  PubMed  Google Scholar 

  76. Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    Article  CAS  PubMed  Google Scholar 

  77. Verhaak RGW et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bhat KPL et al (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted K. Yanagihara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors submit this manuscript in compliance with all guidelines of the Committee On Publication Ethics (COPE) and the Journal of Neuro-oncology. For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagihara, T.K., Saadatmand, H.J. & Wang, T.J.C. Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation. J Neurooncol 130, 397–411 (2016). https://doi.org/10.1007/s11060-016-2270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2270-2

Keywords

Navigation