Skip to main content

Advertisement

Log in

Gamma Knife radiosurgery after radiation therapy as an adjunctive treatment for glioblastoma

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Despite a randomized trial showing no benefit of stereotactic radiosurgery (SRS) prior to radiation therapy (RT), the benefits of SRS after RT and at the time of progression require further characterization. We retrospectively reviewed 48 patients with histopathological diagnoses of glioblastoma (GBM) that were treated with SRS over a 16-year period (1991–2007). Twenty-two were treated as part of their initial treatment paradigm and 26 were treated at the time of progression. The primary endpoints studied were overall survival (OS), survival after SRS and time-to-progression (TTP). Patients treated at the time of progression had significantly longer OS than those treated on initial presentation (17.4 vs. 15.1 months, P = 0.003). On multivariate analysis, Radiation Therapy Oncology Group (RTOG) class III patients, those with more extensive resections, and those who were not on steroids at the time of SRS had significantly improved OS. SRS margin dose was a significant prognostic factor for TTP on multivariate analysis (HR = 0.78, 95% CI: 0.62–0.98). In the subgroup of patients treated with GKS as part of their initial treatment, an increasing number of weeks between surgical resection and GKS was a poor prognostic factor on multivariate analysis (HR = 1.11, 95% CI: 1.01–1.23). In patients who were treated with SRS at the time of progression, chemotherapy was associated with a longer TTP (P = 0.028). Our results suggest that SRS provides a survival advantage when delivered after RT. This benefit may be best appreciated in RTOG class III patients. Moreover, SRS may be a viable alternative to open surgery for aggressive management of GBM at the time of recurrence. Prospective studies of SRS for GBM should focus on these two groups of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CBTRUS (2008) Statistical report: primary brain tumors in the United States, 2000–2004. Central brain tumor registry of the United States. Accessed via http://www.cbtrus.org/reports//2007-2008/2007report.pdf. Accessed 01 Nov 2008

  2. Chang JE, Khuntia D, Robins HI et al (2007) Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol 5:894–902, 907–915

    Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  PubMed  CAS  Google Scholar 

  4. Brem H, Piantadosi S, Burger PC et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 345:1008–1012. doi:10.1016/S0140-6736(95)90755-6

    Article  PubMed  CAS  Google Scholar 

  5. Westphal M, Hilt DC, Bortey E et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neurooncology 5:79–88. doi:10.1215/15228517-5-2-79

    CAS  Google Scholar 

  6. Walker MD, Strike TA, Sheline GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    PubMed  CAS  Google Scholar 

  7. Silbergeld DL, Chicoine MR (1997) Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 86:525–531

    Article  PubMed  CAS  Google Scholar 

  8. Wallner KE, Galicich JH, Krol G et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409

    PubMed  CAS  Google Scholar 

  9. Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911

    PubMed  CAS  Google Scholar 

  10. Sneed PK, Gutin PH, Larson DA et al (1994) Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys 29:719–727

    PubMed  CAS  Google Scholar 

  11. Kondziolka D, Flickinger JC, Bissonette DJ et al (1997) Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41:776–783. doi:10.1097/00006123-199710000-00004 (discussion 783–785)

    Article  PubMed  CAS  Google Scholar 

  12. Shrieve DC, Alexander E 3rd, Black PM et al (1999) Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg 90:72–77

    Article  PubMed  CAS  Google Scholar 

  13. Mahajan A, McCutcheon IE, Suki D et al (2005) Case-control study of stereotactic radiosurgery for recurrent glioblastoma multiforme. J Neurosurg 103:210–217

    Article  PubMed  Google Scholar 

  14. Nwokedi EC, DiBiase SJ, Jabbour S et al (2002) Gamma knife stereotactic radiosurgery for patients with glioblastoma multiforme. Neurosurgery 50:41–46. doi:10.1097/00006123-200201000-00009 (discussion 46–47)

    Article  PubMed  Google Scholar 

  15. Combs SE, Widmer V, Thilmann C et al (2005) Stereotactic radiosurgery (SRS): treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168–2173. doi:10.1002/cncr.21429

    Article  PubMed  Google Scholar 

  16. Souhami L, Seiferheld W, Brachman D et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 60:853–860. doi:10.1016/j.ijrobp.2004.04.011

    PubMed  Google Scholar 

  17. Tsao MN, Mehta MP, Whelan TJ et al (2005) The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys 63:47–55. doi:10.1016/j.ijrobp.2005.05.024

    PubMed  Google Scholar 

  18. Scott CB, Scarantino C, Urtasun R et al (1998) Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int J Radiat Oncol Biol Phys 40:51–55. doi:10.1016/S0360-3016(97)00485-9

    Article  PubMed  CAS  Google Scholar 

  19. Curran WJ Jr, Scott CB, Horton J et al (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85:704–710. doi:10.1093/jnci/85.9.704

    Article  PubMed  Google Scholar 

  20. Mirimanoff RO, Gorlia T, Mason W et al (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24:2563–2569. doi:10.1200/JCO.2005.04.5963

    Article  PubMed  CAS  Google Scholar 

  21. Gorlia T, van den Bent MJ, Hegi ME et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981–22981/CE.3. Lancet Oncol 9:29–38. doi:10.1016/S1470-2045(07)70384-4

    Article  PubMed  Google Scholar 

  22. Sarkaria JN, Mehta MP, Loeffler JS et al (1995) Radiosurgery in the initial management of malignant gliomas: survival comparison with the RTOG recursive partitioning analysis. Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 32:931–941. doi:10.1016/0360-3016(94)00621-Q

    Article  PubMed  CAS  Google Scholar 

  23. Hohwieler Schloss M, Freidberg SR, Heatley GJ et al (1989) Glucocorticoid dependency as a prognostic factor in radiotherapy for cerebral gliomas. Acta Oncol 28:51–55. doi:10.3109/02841868909111181

    Article  PubMed  CAS  Google Scholar 

  24. Kondziolka D, Somaza S, Martinez AJ et al (1997) Radioprotective effects of the 21-aminosteroid U-74389G for stereotactic radiosurgery. Neurosurgery 41:203–208. doi:10.1097/00006123-199707000-00032

    Article  PubMed  CAS  Google Scholar 

  25. Kondziolka D, Mori Y, Martinez AJ et al (1999) Beneficial effects of the radioprotectant 21-aminosteroid U-74389G in a radiosurgery rat malignant glioma model. Int J Radiat Oncol Biol Phys 44:179–184. doi:10.1016/S0360-3016(98)00552-5

    Article  PubMed  CAS  Google Scholar 

  26. Wong ET, Hess KR, Gleason MJ et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2578

    PubMed  CAS  Google Scholar 

  27. Hau P, Baumgart U, Pfeifer K et al (2003) Salvage therapy in patients with glioblastoma: is there any benefit? Cancer 98:2678–2686. doi:10.1002/cncr.11845

    Article  PubMed  Google Scholar 

  28. Stummer W, Reulen HJ, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576 (discussion 564–576)

    Article  PubMed  Google Scholar 

  29. Keles GE, Lamborn KR, Chang SM et al (2004) Volume of residual disease as a predictor of outcome in adult patients with recurrent supratentorial glioblastomas multiforme who are undergoing chemotherapy. J Neurosurg 100:41–46

    Article  PubMed  Google Scholar 

  30. Hsieh PC, Chandler JP, Bhangoo S et al (2005) Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 57:684–692. doi:10.1227/01.NEU.0000175550.96901.A3 (discussion 684–692)

    Article  PubMed  Google Scholar 

  31. Hall WA, Djalilian HR, Sperduto PW et al (1995) Stereotactic radiosurgery for recurrent malignant gliomas. J Clin Oncol 13:1642–1648

    PubMed  CAS  Google Scholar 

  32. Loeffler JS, Alexander E 3rd, Shea WM et al (1992) Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10:1379–1385

    PubMed  CAS  Google Scholar 

  33. Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 47:291–298. doi:10.1016/S0360-3016(99)00507-6

    Article  PubMed  CAS  Google Scholar 

  34. Florell RC, Macdonald DR, Irish WD et al (1992) Selection bias, survival, and brachytherapy for glioma. J Neurosurg 76:179–183

    Article  PubMed  CAS  Google Scholar 

  35. Curran WJ Jr, Scott CB, Weinstein AS et al (1993) Survival comparison of radiosurgery-eligible and -ineligible malignant glioma patients treated with hyperfractionated radiation therapy and carmustine: a report of Radiation Therapy Oncology Group 83-02. J Clin Oncol 11:857–862

    PubMed  Google Scholar 

  36. Irish WD, Macdonald DR, Cairncross JG (1997) Measuring bias in uncontrolled brain tumor trials—to randomize or not to randomize? Can J Neurol Sci 24:307–312

    PubMed  CAS  Google Scholar 

  37. Lustig RA, Scott CB, Curran WJ (2004) Does stereotactic eligibility for the treatment of glioblastoma cause selection bias in randomized studies? Am J Clin Oncol 27:516–521. doi:10.1097/01.coc.0000135641.82026.c4

    Article  PubMed  Google Scholar 

  38. Gomez-Rio M, Rodriguez-Fernandez A, Ramos-Font C et al (2008) Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging 35:966–975. doi:10.1007/s00259-007-0661-5

    Article  PubMed  Google Scholar 

  39. Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30:552–558

    Article  PubMed  CAS  Google Scholar 

  40. Zeng QS, Li CF, Zhang K et al (2007) Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol 84:63–69. doi:10.1007/s11060-007-9341-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many of these patients were treated by Dr. Ladislau Steiner for their radiosurgery and by Dr. John Jane Sr. and Dr. Mark Shaffrey for their tumor resections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Sheehan.

Additional information

Portions of this work were presented as proceedings at the Annual Meeting of the Neurosurgical Society of the Virginias, Hot Springs, Virginia, January 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouratian, N., Crowley, R.W., Sherman, J.H. et al. Gamma Knife radiosurgery after radiation therapy as an adjunctive treatment for glioblastoma. J Neurooncol 94, 409–418 (2009). https://doi.org/10.1007/s11060-009-9873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9873-9

Keywords

Navigation