Skip to main content

Advertisement

Log in

Predictive model for recovery of visual field after surgery of pituitary adenoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Visual field defect is a major indication for surgery of pituitary adenoma, but visual outcome after surgery is difficult to predict. We developed a nomogram that predicts postoperative restoration of visual field defects in patients with pituitary adenoma. This study was a retrospective cohort investigation of patients who were treated for pituitary adenoma between January 2009 and December 2013. We enrolled 111 eyes of 57 patients who completed one ophthalmological evaluation preoperatively and at least two evaluations within 6 months after surgery. Serial changes in visual fields and retinal nerve fiber layer (RNFL) thickness were evaluated. Multiple logistic regression analysis was performed to select prognostic variables, and a nomogram to predict restoration of visual field defects was constructed. Visual field defects continuously improved until 3 months after surgery. However, average, superior, and inferior RNFL thickness continuously decreased until 6 months after surgery. Multiple logistic regression analysis revealed that worse preoperative visual field defect (p = 0.018), high MRI compression grade (p = 0.009), and inferior RNFL thinning (p = 0.011) were significantly associated with worse visual outcome. The nomogram that predicts the visual restoration showed an area under the receiver operating characteristic curve of 0.84. In conclusion, we developed a nomogram that predicted the restoration of visual field defects after removal of pituitary adenoma. This would allow tailored counseling of individual patients by precisely predicting visual recovery after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kerrison JB, Lynn MJ, Baer CA, Newman SA, Biousse V, Newman NJ (2000) Stages of improvement in visual fields after pituitary tumor resection. Am J Ophthalmol 130:813–820

    Article  CAS  PubMed  Google Scholar 

  2. Powell M (1995) Recovery of vision following transsphenoidal surgery for pituitary adenomas. Br J Neurosurg 9:367–373

    Article  CAS  PubMed  Google Scholar 

  3. Gnanalingham KK, Bhattacharjee S, Pennington R, Ng J, Mendoza N (2005) The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: predictive factors for a good outcome. J Neurol Neurosurg Psychiatr 76:415–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu FF, Chen LL, Su YH, Huo LH, Lin XX, Liao RD (2015) Factors influencing improvement of visual field after trans-sphenoidal resection of pituitary macroadenomas: a retrospective cohort study. Int J Ophthalmol 8:1224–1228. doi:10.3980/j.issn.2222-3959.2015.06.27

    PubMed  PubMed Central  Google Scholar 

  5. Ho RW, Huang HM, Ho JT (2015) The influence of pituitary adenoma size on vision and visual outcomes after trans-sphenoidal adenectomy: a report of 78 cases. J Korean Neurosurg Soc 57:23–31. doi:10.3340/jkns.2015.57.1.23

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parmar DN, Sofat A, Bowman R, Bartlett JR, Holder GE (2000) Visual prognostic value of the pattern electroretinogram in chiasmal compression. Br J Ophthalmol 84:1024–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jahangiri A, Lamborn KR, Blevins L, Kunwar S, Aghi MK (2012) Factors associated with delay to pituitary adenoma diagnosis in patients with visual loss. J Neurosurg 116:283–289. doi:10.3171/2011.6.jns101663

    Article  PubMed  Google Scholar 

  8. Peter M, De Tribolet N (1995) Visual outcome after transsphenoidal surgery for pituitary adenomas. Br J Neurosurg 9:151–157

    Article  CAS  PubMed  Google Scholar 

  9. Sullivan LJ, O’Day J, McNeill P (1991) Visual outcomes of pituitary adenoma surgery. St. Vincent’s Hospital 1968–1987. J Clin Neuroophthalmol 11:262–267

    CAS  PubMed  Google Scholar 

  10. Fraser CL, Biousse V, Newman NJ (2012) Visual outcomes after treatment of pituitary adenomas. Neurosurg Clin N Am 23:607–619. doi:10.1016/j.nec.2012.06.004

    Article  PubMed  Google Scholar 

  11. Kanamori A, Catrinescu MM, Belisle JM, Costantino S, Levin LA (2012) Retrograde and Wallerian axonal degeneration occur synchronously after retinal ganglion cell axotomy. Am J Pathol 181:62–73. doi:10.1016/j.ajpath.2012.03.030

    Article  PubMed  PubMed Central  Google Scholar 

  12. Danesh Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD (2008) In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 49:1879–1885

    Article  PubMed  Google Scholar 

  13. Jacob M, Raverot G, Jouanneau E, Borson Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147(64–70):e62

    Google Scholar 

  14. Danesh Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 47:4827–4835

    Article  PubMed  Google Scholar 

  15. Fujimoto N, Saeki N, Miyauchi O, Adachi-Usami E (2002) Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye (Lond) 16:731–738. doi:10.1038/sj.eye.6700165

    Article  CAS  Google Scholar 

  16. Shults W (1998) Compressive optic neuropathies. In: Miller NR, Newman NJ (eds) Walsh and Hoyt’s clinical neuro-ophthalmology, 5th edn. Williams and Wilkins, Baltimore, pp 657–658

    Google Scholar 

  17. Marcus M, Vitale S, Calvert PC, Miller NR (1991) Visual parameters in patients with pituitary adenoma before and after transsphenoidal surgery. Aust N Z J Ophthalmol 19:111–118

    Article  CAS  PubMed  Google Scholar 

  18. Kanamori A, Nakamura M, Matsui N, Nagai A, Nakanishi Y, Kusuhara S, Yamada Y, Negi A (2004) Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs. Ophthalmology 111:2278–2283

    Article  PubMed  Google Scholar 

  19. Moura FC, Medeiros FA, Monteiro ML (2007) Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology 114:175–181

    Article  PubMed  Google Scholar 

  20. Moon CH, Hwang SC, Kim B, Ohn Y, Park TK (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci 52:8527–8533

    Article  PubMed  Google Scholar 

  21. Mikelberg FS, Yidegiligne HM (1993) Axonal loss in band atrophy of the optic nerve in craniopharyngioma: a quantitative analysis. Can J Ophthalmol 28:69–71

    CAS  PubMed  Google Scholar 

  22. Monteiro ML, Moura FC, Medeiros FA (2007) Diagnostic ability of optical coherence tomography with a normative database to detect band atrophy of the optic nerve. Am J Ophthalmol 143:896–899

    Article  PubMed  Google Scholar 

  23. Araie M (2013) Test–retest variability in structural parameters measured with glaucoma imaging devices. Jpn J Ophthalmol 57:1–24

    Article  PubMed  Google Scholar 

  24. Moon CH, Hwang SC, Ohn Y, Park TK (2011) The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci 52:7966–7973

    Article  PubMed  Google Scholar 

  25. Lee JP, Park IW, Chung YS (2011) The volume of tumor mass and visual field defect in patients with pituitary macroadenoma. Korean J Ophthalmol 25:37–41. doi:10.3341/kjo.2011.25.1.37

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ikeda H, Yoshimoto T (1995) Visual disturbances in patients with pituitary adenoma. Acta Neurol Scand 92:157–160

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2007865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Ho Byeon.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Junwon Lee and Seung Woo Kim have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, S.W., Kim, D.W. et al. Predictive model for recovery of visual field after surgery of pituitary adenoma. J Neurooncol 130, 155–164 (2016). https://doi.org/10.1007/s11060-016-2227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2227-5

Keywords

Navigation