Skip to main content

Advertisement

Log in

A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We evaluated the efficacy of combination enzastaurin (LY317615) and bevacizumab for recurrent malignant gliomas and explored serologic correlates. We enrolled 81 patients with glioblastomas (GBM, n = 40) and anaplastic gliomas (AG, n = 41). Patients received enzastaurin as a loading dose of 1125 mg, followed by 500 or 875 mg daily for patients on non-enzyme-inducing or enzyme-inducing antiepileptics, respectively. Patients received bevacizumab 10 mg/kg intravenously biweekly. Clinical evaluations were repeated every 4 weeks. Magnetic resonance imaging was obtained at baseline and every 8 weeks from treatment onset. Phosphorylated glycogen synthase kinase (GSK)-3 levels from peripheral blood mononuclear cells (PBMCs) were checked with each MRI. Median overall survival was 7.5 and 12.4 months for glioblastomas and anaplastic glioma cohorts, with median progression-free survivals of 2.0 and 4.4 months, respectively. Of GBM patients, 3/40 (7.5 %) were not evaluable, while 8/37 (22 %) had partial or complete response and 20/37 (54 %) had stable disease for 2+ months. Of the 39 evaluable AG patients, 18 (46 %) had an objective response, and 16 (41 %) had stable disease for 2+ months. The most common grade 3+ toxicities were lymphopenia (15 %), hypophosphatemia (8.8 %) and thrombotic events (7.5 %). Two (2.5 %) GBM patients died suddenly; another death (1.3 %) occurred from intractable seizures. Phosphorylated GSK-3 levels from PBMCs did not correlate with treatment response. A minimally important improvement in health-related quality of life was self-reported in 7–9/24 (29.2–37.5 %). Early response based on Levin criteria was significantly associated with significantly longer progression free survival for glioblastomas. Enzastaurin (LY317615) in combination with bevacizumab for recurrent malignant gliomas is well-tolerated, with response and progression-free survival similar to bevacizumab monotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dolecek TA et al (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14:v1–v49

    Article  PubMed Central  PubMed  Google Scholar 

  2. Louis D et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed Central  PubMed  Google Scholar 

  3. Frankel SA, German WJ (1958) Glioblastoma multiforme. J Neurosurg 15:489–503

    Article  CAS  PubMed  Google Scholar 

  4. Pichlmeier U et al (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro-Oncology 10:1025–1034

    Article  PubMed Central  PubMed  Google Scholar 

  5. Wong ET et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572

    CAS  PubMed  Google Scholar 

  6. Laperriere N, Zuraw L, Cairncross G (2002) Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64:259–273

    Article  PubMed  Google Scholar 

  7. Scott CB et al (1998) Validation and predictive power of radiation therapy oncology group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int J Radiat Oncol Biol Phys 40:51–55

    Article  CAS  PubMed  Google Scholar 

  8. Tsao MN et al (2005) The American society for therapeutic radiology and oncology (ASTRO) evidence-based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys 63:47–55

    Article  PubMed  Google Scholar 

  9. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  10. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  11. Maxwell M et al (1991) Expression of angiogenic growth factor genes in primary human astrocytomas may contribute to their growth and progression. Cancer Res 51:1345–1351

    CAS  PubMed  Google Scholar 

  12. Plate KH et al (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  CAS  PubMed  Google Scholar 

  13. Stefanik DF et al (2001) Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol 55:91–100

    Article  CAS  PubMed  Google Scholar 

  14. Millauer B et al (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579

    Article  CAS  PubMed  Google Scholar 

  15. Guo D et al (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 270:6729–6733

    Article  CAS  PubMed  Google Scholar 

  16. McMahon G (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist 5:3–10

    Article  CAS  PubMed  Google Scholar 

  17. Sawano A et al (1997) The phosphorylated 1169-tyrosine containing region of Flt-1 kinase (VEGFR-1) Is a major binding site for PLCγ. Biochem Biophys Res Commun 238:487–491

    Article  CAS  PubMed  Google Scholar 

  18. Xia P et al (1996) Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 98:2018–2026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Buchner K (2000) The role of protein kinase C in the regulation of cell growth and in signalling to the cell nucleus. J Cancer Res Clin Oncol 126:1–11

    Article  CAS  PubMed  Google Scholar 

  20. Martelli AM et al (1999) Multiple biological responses activated by nuclear protein kinase C. J Cell Biochem 74:499–521

    Article  CAS  PubMed  Google Scholar 

  21. Giglio P et al (2012) Phase 2 trial of irinotecan and thalidomide in adults with recurrent anaplastic glioma. Cancer 118:3599–3606

    Article  CAS  PubMed  Google Scholar 

  22. Groves MD et al (2009) Two phase II trials of temozolomide with interferon-[alpha]2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. Br J Cancer 101:615–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Robins HI et al (2006) Phase 2 trial of radiation plus high-dose tamoxifen for glioblastoma multiforme: RTOG protocol BR-0021. Neuro-Oncology 8:47–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ruiz J et al (2012) A phase II trial of thalidomide and procarbazine in adult patients with recurrent or progressive malignant gliomas. J Neurooncol 106:611–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Presta LG et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    CAS  PubMed  Google Scholar 

  26. Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Vredenburgh JJ et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    Article  CAS  PubMed  Google Scholar 

  28. Kreisl TN et al (2011) A phase II trial of single-agent bevacizumab in patients with recurrent anaplastic glioma. Neuro-Oncology 13:1143–1150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sandmann T et al (2015) Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol 33(25):2735–2744

    Article  PubMed  Google Scholar 

  30. Chinot OL et al (2011) AVAglio: phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther 28:334–340

    Article  CAS  PubMed  Google Scholar 

  31. Aiello LP et al (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 46:1473–1480

    Article  CAS  PubMed  Google Scholar 

  32. Danis RP et al (1998) Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKCbeta inhibition with LY333531. Invest Ophthalmol Vis Sci 39:171–179

    CAS  PubMed  Google Scholar 

  33. Graff JR et al (2005) The protein kinase Cβ–selective inhibitor, enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 65:7462–7469

    Article  CAS  PubMed  Google Scholar 

  34. Ishii H et al (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272:728–731

    Article  CAS  PubMed  Google Scholar 

  35. Jirousek MR et al (1996) (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-dimetheno-1H, 13H-dibenzo[e, k]pyrrolo[3,4-h][1, 4, 13]oxadiazacyclohexadecene-1,3(2H)-d ione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem 39:2664–2671

    Article  CAS  PubMed  Google Scholar 

  36. Yoshiji H et al (1999) Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 59:4413–4418

    CAS  PubMed  Google Scholar 

  37. Camidge DR et al (2008) A phase I safety, tolerability, and pharmacokinetic study of enzastaurin combined with capecitabine in patients with advanced solid tumors. Anticancer Drugs 19:77–84

    Article  CAS  PubMed  Google Scholar 

  38. Carducci MA et al (2006) Phase I dose escalation and pharmacokinetic study of enzastaurin, an oral protein kinase C beta inhibitor, in patients With advanced cancer. J Clin Oncol 24:4092–4099

    Article  CAS  PubMed  Google Scholar 

  39. Rademaker Lakhai J et al (2007) Phase I pharmacokinetic and pharmacodynamic study of the oral protein kinase C beta-inhibitor enzastaurin in combination with gemcitabine and cisplatin in patients with advanced cancer. Clin Cancer Res 13:4474–4481

    Article  CAS  PubMed  Google Scholar 

  40. Wick W et al (2010) Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28:1168–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  42. Weitzner MA et al (1995) The functional assessment of cancer therapy (FACT) scale. Development of a brain subscale and revalidation of the general version (FACT-G) in patients with primary brain tumors. Cancer 75:1151–1161

    Article  CAS  PubMed  Google Scholar 

  43. Yost KJ, Eton DT (2005) Combining distribution- and anchor-based approaches to determine minimally important differences: the FACIT experience. Eval Health Prof 28:172–191

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The National Cancer Institute (NCI) Intramural Research Program provided grant funding for this trial [NCT00586508]. Enzastaurin (LY317615) and additional funds were provided by Eli Lilly via a Cooperative Research and Development Agreement (CRADA) with the NCI. A portion of these data was previously presented at the Society for Neuro-Oncology in November 2011, in Garden Grove, California.

Funding

National Cancer Institute Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazmin Odia.

Ethics declarations

Conflicts of Interest

Authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2015_2020_MOESM1_ESM.tif

Supplementary material 1 (TIFF 11487 kb).Figure S1: Progression and Overall Survival Relative to Response at 96 Hours for Glioblastoma and Anaplastic Glioma Cohorts

Supplementary material 2 (DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odia, Y., Iwamoto, F.M., Moustakas, A. et al. A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J Neurooncol 127, 127–135 (2016). https://doi.org/10.1007/s11060-015-2020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-2020-x

Keywords

Navigation