Skip to main content

Advertisement

Log in

Mouse models of glioblastoma: lessons learned and questions to be answered

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma is the most common primary brain tumour in adults. While many patients achieve disease remission following treatment with surgical resection, radiation therapy and chemotherapy, this remission is brief and invariably followed by tumour recurrence and progression. Recent work using mouse models of the disease, coupled with data generated by The Cancer Genome Atlas, have given us new insights into the mechanisms that underlie gliomagenesis and result in glioblastoma heterogeneity. These findings suggest that the treatment of glioblastoma will require a more nuanced understanding of their biology and the employment of targeted therapeutic approaches. In this review, we will summarize the current state of mouse modeling in glioma, with a focus on how these models may inform our understanding of this disease and its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  2. Das S, Srikanth M, Kessler JA (2008) Cancer stem cells and glioma. Nat Clin Pract Neurol 4:427–435. doi:10.1038/ncpneuro0862

    Article  CAS  PubMed  Google Scholar 

  3. Das S, Srikanth M, Kessler JA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. doi:10.1038/nature07385

    Article  Google Scholar 

  4. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. doi:10.1126/science.1164382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, Kelly MO, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Network TCGAR (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. doi:10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598. doi:10.1038/nature07567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Naiche LA, Papaioannou VE (2007) Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 45:768–775. doi:10.1002/dvg.20353

    Article  CAS  PubMed  Google Scholar 

  8. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods 24:71–80. doi:10.1006/meth 2001.1159

    Article  CAS  PubMed  Google Scholar 

  10. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710. doi:10.1101/gad.1596707

    Article  CAS  PubMed  Google Scholar 

  11. Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, Alvarez-Buylla A, Parada LF (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56. doi:10.1016/j.ccr.2008.12.006

    Article  PubMed Central  PubMed  Google Scholar 

  12. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. doi:10.1126/science.1226929

    PubMed Central  PubMed  Google Scholar 

  13. Ikawa M, Tanaka N, Kao WW, Verma IM (2003) Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 8:666–673

    Article  CAS  PubMed  Google Scholar 

  14. Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH, Verma IM (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15:110–116. doi:10.1038/nm.1863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hambardzumyan D, Amankulor NM, Helmy KY, Becher OJ, Holland EC (2009) Modeling adult gliomas using RCAS/t-va technology. Trans Oncol 2:89–95

    Article  Google Scholar 

  16. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4:e7752. doi:10.1371/journal.pone.0007752

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272. doi:10.1038/nm.3337

    Article  CAS  PubMed  Google Scholar 

  18. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186

    Article  CAS  PubMed  Google Scholar 

  19. Cawthon RM, O’Connell P, Buchberg AM, Viskochil D, Weiss RB, Culver M, Stevens J, Jenkins NA, Copeland NG, White R (1990) Identification and characterization of transcripts from the neurofibromatosis 1 region: the sequence and genomic structure of EVI2 and mapping of other transcripts. Genomics 7:555–565

    Article  CAS  PubMed  Google Scholar 

  20. Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NG, Jenkins NA et al (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62:187–192

    Article  CAS  PubMed  Google Scholar 

  21. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7:353–361. doi:10.1038/ng0794-353

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130. doi:10.1016/j.ccr.2005.07.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kwon CH, Zhao D, Chen J, Alcantara S, Li Y, Burns DK, Mason RP, Lee EY, Wu H, Parada LF (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294. doi:10.1158/0008-5472.CAN-07-6867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Guha A, Feldkamp MM, Lau N, Boss G, Pawson A (1997) Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15:2755–2765

    Article  CAS  PubMed  Google Scholar 

  25. Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57. doi:10.1038/75596

    Article  CAS  PubMed  Google Scholar 

  27. Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61:3826–3836

    CAS  PubMed  Google Scholar 

  28. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312. doi:10.1101/gad.1653708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Deinhardt F, Wolfe L, Northrop R, Marczynska B, Ogden J, McDonald R, Falk L, Shramek G, Smith R, Deinhardt J (1972) Induction of neoplasms by viruses in marmoset monkeys. J Med Primatol 1:29–50

    CAS  PubMed  Google Scholar 

  30. Uhrbom L, Hesselager G, Nister M, Westermark B (1998) Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58:5275–5279

    CAS  PubMed  Google Scholar 

  31. Guha A, Dashner K, Black PM, Wagner JA, Stiles CD (1995) Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 60:168–173

    Article  CAS  PubMed  Google Scholar 

  32. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925. doi:10.1101/gad.903001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hesselager G, Uhrbom L, Westermark B, Nister M (2003) Complementary effects of platelet-derived growth factor autocrine stimulation and p53 or Ink4a-Arf deletion in a mouse glioma model. Cancer Res 63:4305–4309

    CAS  PubMed  Google Scholar 

  34. Tchougounova E, Kastemar M, Brasater D, Holland EC, Westermark B, Uhrbom L (2007) Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma. Oncogene 26:6289–6296. doi:10.1038/sj.onc.1210455

    Article  CAS  PubMed  Google Scholar 

  35. Hede SM, Hansson I, Afink GB, Eriksson A, Nazarenko I, Andrae J, Genove G, Westermark B, Nister M (2009) GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background. Glia 57:1143–1153. doi:10.1002/glia.20837

    Article  PubMed  Google Scholar 

  36. Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S, Bruce JN, Canoll P (2011) Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS ONE 6:e20041. doi:10.1371/journal.pone.0020041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51:187–199. doi:10.1016/j.neuron.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  38. Gregorian C, Nakashima J, Le Belle J, Ohab J, Kim R, Liu A, Smith KB, Groszer M, Garcia AD, Sofroniew MV, Carmichael ST, Kornblum HI, Liu X, Wu H (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29:1874–1886. doi:10.1523/JNEUROSCI.3095-08.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189. doi:10.1126/science.1065518

    Article  CAS  PubMed  Google Scholar 

  40. Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, Parada LF (2012) Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32:5880–5890. doi:10.1523/JNEUROSCI.5462-11.2012

    Article  CAS  PubMed  Google Scholar 

  41. Bleau A-M, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3 K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Stem Cell 4:226–235. doi:10.1016/j.stem.2009.01.007

    CAS  Google Scholar 

  42. Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168

    Article  CAS  PubMed  Google Scholar 

  43. Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T (2005) Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res 65:5172–5180. doi:10.1158/0008-5472.CAN-04-3902

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15:514–526. doi:10.1016/j.ccr.2009.04.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Song H, Hollstein M, Xu Y (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9:573–580. doi:10.1038/ncb1571

    Article  CAS  PubMed  Google Scholar 

  46. Hanel W, Moll UM (2012) Links between mutant p53 and genomic instability. J Cell Biochem 113:433–439. doi:10.1002/jcb.23400

    Article  CAS  PubMed  Google Scholar 

  47. Easton DF, Ponder MA, Huson SM, Ponder BA (1993) An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet 53:305–313

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Reilly KM, Tuskan RG, Christy E, Loisel DA, Ledger J, Bronson RT, Smith CD, Tsang S, Munroe DJ, Jacks T (2004) Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci USA 101:13008–13013. doi:10.1073/pnas.0401236101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunit Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janbazian, L., Karamchandani, J. & Das, S. Mouse models of glioblastoma: lessons learned and questions to be answered. J Neurooncol 118, 1–8 (2014). https://doi.org/10.1007/s11060-014-1401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1401-x

Keywords

Navigation