Skip to main content
Log in

The role of the CXCR4 cell surface chemokine receptor in glioma biology

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

CXCR4, a cell surface chemokine receptor, mediates cellular dissemination, invasion, and proliferation in a wide range of cancers including gliomas. It is over-expressed in glioma progenitor cells, and its protein ligand, CXCL12, has been shown to mediate a specific proliferative response in these cells thereby implicating a role for CXCR4 in glioma initiation and renewal. Given the failure of currently employed therapies to meaningfully impact prognosis in patients with high-grade gliomas, the CXCR4–CXCL12 axis represents a novel biologically relevant mechanism that could be specifically targeted for therapy. From this perspective, this review summarizes the biological effects of CXCR4 activity and its implications for glioma pathogenesis. Ultimately, the development of effective treatment approaches for malignant glioma must be based on a rational mechanistic understanding of tumor cell biology. As such, this article presents such a framework with regard to the CXCR4 pathway in glioma thereby supporting the further investigation of CXCR4 as a therapeutic target in patients with this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  PubMed  CAS  Google Scholar 

  2. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021. doi:10.1158/0008-5472.can-04-1364

    Article  PubMed  CAS  Google Scholar 

  3. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C, Alessandri G, Marras C, Croci D, De Rossi M (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860. doi:10.1002/glia.20414

    Article  PubMed  Google Scholar 

  4. Ehtesham M, Mapara KY, Stevenson CB, Thompson RC (2009) CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett 274:305–312. doi:10.1016/j.canlet.2008.09.034

    Article  PubMed  CAS  Google Scholar 

  5. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  6. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837

    PubMed  CAS  Google Scholar 

  7. Kijima T, Maulik G, Ma PC, Tibaldi EV, Turner RE, Rollins B, Sattler M, Johnson BE, Salgia R (2002) Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res 62:6304–6311

    PubMed  CAS  Google Scholar 

  8. Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63:3833–3839

    PubMed  CAS  Google Scholar 

  9. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, Prior JL, Piwnica-Worms D, Bridger G, Ley TJ, DiPersio JF (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113:6206–6214. doi:10.1182/blood-2008-06-162123

    Article  PubMed  CAS  Google Scholar 

  10. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, Zona GL, Spaziante R, Florio T, Schettini G (2003) Stromal cell-derived factor 1α stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63:1969–1974

    PubMed  CAS  Google Scholar 

  11. Ehtesham M, Winston JA, Kabos P, Thompson RC (2006) CXCR4 expression mediates glioma cell invasiveness. Oncogene 25:2801–2806

    Article  PubMed  CAS  Google Scholar 

  12. Stevenson CB, Ehtesham M, McMillan KM, Valadez JG, Edgeworth ML, Price RR, Abel TW, Mapara KY, Thompson RC (2008) Cxcr4 expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery 63:560–570. doi:10.1227/1201.NEU.0000324896.0000326088.EF

    Article  PubMed  Google Scholar 

  13. Zhou Y, Larsen PH, Hao C, Yong VW (2002) CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277:49481–49487. doi:10.1074/jbc.M206222200

    Article  PubMed  CAS  Google Scholar 

  14. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071. doi:10.1126/science.1194396

    Article  PubMed  CAS  Google Scholar 

  15. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16:2927–2931. doi:10.1158/1078-0432.ccr-09-2329

    Article  PubMed  CAS  Google Scholar 

  16. Zhou H, Tai H–H (2000) Expression and functional characterization of mutant human CXCR4 in insect cells: role of cysteinyl and negatively charged residues in ligand binding. Arch Biochem Biophys 373:211–217. doi:10.1006/abbi.1999.1555

    Article  PubMed  CAS  Google Scholar 

  17. Veldkamp CT, Seibert C, Peterson FC, De La Cruz NB, Haugner JC III, Basnet H, Sakmar TP, Volkman BF (2008) Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 1:ra4. doi:10.1126/scisignal.1160755

    Article  PubMed  Google Scholar 

  18. Crump MP, Gong J-H, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier J-L, Baggiolini M, Sykes BD, Clark-Lewis I (1997) Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 16:6996–7007

    Article  PubMed  CAS  Google Scholar 

  19. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453

    Article  PubMed  CAS  Google Scholar 

  20. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599. doi:10.1038/31269

    Article  PubMed  CAS  Google Scholar 

  21. Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M, Pleasure SJ (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129:4249–4260

    PubMed  CAS  Google Scholar 

  22. Lu M, Grove EA, Miller RJ (2002) Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci USA 99:7090–7095. doi:10.1073/pnas.092013799092013799

    Article  PubMed  CAS  Google Scholar 

  23. Paredes MF, Li G, Berger O, Baraban SC, Pleasure SJ (2006) Stromal-derived factor-1 (CXCL12) regulates laminar position of Cajal–Retzius cells in normal and dysplastic brains. J Neurosci 26:9404–9412. doi:26/37/940410.1523/JNEUROSCI.2575-06.2006

    Article  PubMed  CAS  Google Scholar 

  24. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T, Hollt V, Schulz S (2003) CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23:5123–5130. doi:23/12/5123

    PubMed  CAS  Google Scholar 

  25. Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, Miller RJ (2008) The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 28:6720–6730. doi:28/26/672010.1523/JNEUROSCI.1677-08.2008

    Article  PubMed  CAS  Google Scholar 

  26. Wu Y, Peng H, Cui M, Whitney NP, Huang Y, Zheng JC (2009) CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J Neurochem 109:1157–1167. doi:JNC604310.1111/j.1471-4159.2009.06043.x

    Article  PubMed  CAS  Google Scholar 

  27. Roland J, Murphy BJ, Ahr B, Robert-Hebmann V, Delauzun V, Nye KE, Devaux C, Biard-Piechaczyk M (2003) Role of the intracellular domains of CXCR4 in SDF-1–mediated signaling. Blood 101:399–406. doi:10.1182/blood-2002-03-0978

    Article  PubMed  CAS  Google Scholar 

  28. Lu D-Y, Tang C-H, Yeh W-L, Wong K-L, Lin C-P, Chen Y-H, Lai C-H, Chen Y-F, Leung Y-M, Fu W-M (2009) SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3 K/Akt, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol 613:146–154. doi:10.1016/j.ejphar.2009.03.001

    Article  PubMed  CAS  Google Scholar 

  29. Furusato B, Mohamed A, Uhlén M, Rhim JS (2010) CXCR4 and cancer. Pathol Int 60:497–505. doi:10.1111/j.1440-1827.2010.02548.x

    Article  PubMed  CAS  Google Scholar 

  30. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman R, Pienta K, Wang J (2010) CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29:709–722. doi:10.1007/s10555-010-9256-x

    Article  PubMed  CAS  Google Scholar 

  31. Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ (2002) CXCR4–SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100:2597–2606. doi:10.1182/blood-2002-01-0031

    Article  PubMed  CAS  Google Scholar 

  32. Adams GB, Chabner KT, Foxall RB, Weibrecht KW, Rodrigues NP, Dombkowski D, Fallon R, Poznansky MC, Scadden DT (2003) Heterologous cells cooperate to augment stem cell migration, homing, and engraftment. Blood 101:45–51. doi:10.1182/blood-2002-02-0486

    Article  PubMed  CAS  Google Scholar 

  33. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC (1998) Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279:381–384. doi:10.1126/science.279.5349.381

    Article  PubMed  CAS  Google Scholar 

  34. Burger M, Glodek A, Hartmann T, Schmitt-Graff A, Silberstein LE, Fujii N, Kipps TJ, Burger JA (2003) Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 22:8093–8101

    Article  PubMed  CAS  Google Scholar 

  35. Samara GJ, Lawrence DM, Chiarelli CJ, Valentino MD, Lyubsky S, Zucker S, Vaday GG (2004) CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett 214:231–241. doi:10.1016/j.canlet.2004.04.035

    Article  PubMed  CAS  Google Scholar 

  36. Sun YX, Schneider A, Jung Y, Wang J, Dai J, Cook K, Osman NI, Koh-Paige AJ, Shim H, Pienta KJ, Keller ET, McCauley LK, Taichman RS (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20:318–329

    Article  PubMed  CAS  Google Scholar 

  37. Tamamura H, Hori A, Kanzaki N, Hiramatsu K, Mizumoto M, Nakashima H, Yamamoto N, Otaka A, Fujii N (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550:79–83. doi:10.1016/s0014-5793(03)00824-x

    Article  PubMed  CAS  Google Scholar 

  38. Richert MM, Vaidya KS, Mills CN, Wong D, Korz W, Hurst DR, Welch DR (2009) Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep 21:761–767

    PubMed  CAS  Google Scholar 

  39. Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L, Cook KR, Lucci A (2009) A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res 155:231–236. doi:10.1016/j.jss.2008.06.044

    Article  PubMed  CAS  Google Scholar 

  40. Ma W-F, Du J, Fu L-P, Fang R, Chen H-Y, Cai S-H (2009) Phenotypic knockout of CXCR4 by a novel recombinant protein TAT/54R/KDEL inhibits tumors metastasis. Mol Cancer Res 7:1613–1621. doi:10.1158/1541-7786.mcr-09-0078

    Article  PubMed  CAS  Google Scholar 

  41. Burger JA, Stewart DJ (2009) CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs 18:481–490. doi:10.1517/13543780902804249

    Article  PubMed  CAS  Google Scholar 

  42. Uchida D, Onoue T, Kuribayashi N, Tomizuka Y, Tamatani T, Nagai H, Miyamoto Y (2011) Blockade of CXCR4 in oral squamous cell carcinoma inhibits lymph node metastases. Eur J Cancer 47:452–459. doi:10.1016/j.ejca.2010.09.028

    Article  PubMed  CAS  Google Scholar 

  43. Chua AWL, Hay HS, Rajendran P, Shanmugam MK, Li F, Bist P, Koay ESC, Lim LHK, Kumar AP, Sethi G (2010) Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-[kappa] B activation in breast and pancreatic tumor cells. Biochem Pharmacol 80:1553–1562. doi:10.1016/j.bcp.2010.07.045

    Article  PubMed  CAS  Google Scholar 

  44. Porvasnik S, Sakamoto N, Kusmartsev S, Eruslanov E, Kim W-J, Cao W, Urbanek C, Wong D, Goodison S, Rosser CJ (2009) Effects of CXCR4 antagonist CTCE-9908 on prostate tumor growth. Prostate 69:1460–1469. doi:10.1002/pros.21008

    Article  PubMed  CAS  Google Scholar 

  45. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225

    PubMed  Google Scholar 

  46. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K, Kieran MW, Luster AD, Segal RA (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci 100:13513–13518. doi:10.1073/pnas.2235846100

    Article  PubMed  CAS  Google Scholar 

  47. Guillemin K, Krasnow MA (1997) The hypoxic response: huffing and HIFing. Cell 89:9–12

    Article  PubMed  CAS  Google Scholar 

  48. Semenza G (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  PubMed  CAS  Google Scholar 

  49. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425:307–311

    Article  PubMed  CAS  Google Scholar 

  50. Rempel SA, Dudas S, Ge S, Gutiérrez JA (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111

    PubMed  CAS  Google Scholar 

  51. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia-inducible factor 1α in brain tumors. Cancer 88:2606–2618. doi:10.1002/1097-0142(20000601)88:11<2606:aid-cncr25>3.0.co;2-w

    Article  PubMed  CAS  Google Scholar 

  52. Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86:1221–1232

    Article  PubMed  CAS  Google Scholar 

  53. Ma Y-H, Mentlein R, Knerlich F, Kruse M-L, Mehdorn H, Held-Feindt J (2008) Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol 86:31–45. doi:10.1007/s11060-007-9439-7

    Article  PubMed  Google Scholar 

  54. X-w Bian, S-x Yang, J-h Chen, Y-f Ping, X-d Zhou, Q-l Wang, X-f Jiang, Gong W, Xiao H-I, Du L-I, Chen Z-q, Zhao W, J-q Shi, Wang JM (2007) Preferential expression of chemokine receptor Cxcr4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery 61:570–579

    Article  Google Scholar 

  55. Redjal N, Chan JA, Segal RA, Kung AL (2006) CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 12:6765–6771. doi:10.1158/1078-0432.ccr-06-1372

    Article  PubMed  CAS  Google Scholar 

  56. Ramachandran PV, Ignacimuthu S (2012) RNA interference as a plausible anticancer therapeutic tool. Asian Pac J Cancer Prev 13:2445–2452

    Article  PubMed  Google Scholar 

  57. Y-f Ping, X-h Yao, J-y Jiang, Yu S-c, Jiang T, Lin MCM, Chen J-h, Wang B, Zhang R, Cui Y-h, Qian C, Wang JM, Bian X-w (2011) The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3 K/AKT signalling. J Pathol 224:344–354. doi:10.1002/path.2908

    Article  Google Scholar 

  58. Ehtesham M, Stevenson CB, Thompson RC (2008) Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery 63:E820

    Article  PubMed  Google Scholar 

  59. Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L, Mantovani A, Allavena P (2004) Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64:8420–8427. doi:64/22/842010.1158/0008-5472.CAN-04-1343

    Article  PubMed  CAS  Google Scholar 

  60. Sung B, Jhurani S, Ahn KS, Mastuo Y, Yi T, Guha S, Liu M, Aggarwal BB (2008) Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res 68:8938–8944. doi:10.1158/0008-5472.CAN-08-2155

    Article  PubMed  CAS  Google Scholar 

  61. Li JK, Yu L, Shen Y, Zhou LS, Wang YC, Zhang JH (2008) Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro. World J Gastroenterol 14:2308–2313

    Article  PubMed  CAS  Google Scholar 

  62. Kim SY, Lee CH, Midura BV, Yeung C, Mendoza A, Hong SH, Ren L, Wong D, Korz W, Merzouk A, Salari H, Zhang H, Hwang ST, Khanna C, Helman LJ (2008) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 25:201–211. doi:10.1007/s10585-007-9133-3

    Article  PubMed  CAS  Google Scholar 

  63. Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB (2007) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67:651–658. doi:10.1158/0008-5472.CAN-06-2762

    Article  PubMed  CAS  Google Scholar 

  64. Sehgal A, Keener C, Boynton AL, Warrick J, Murphy GP (1998) CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol 69:99–104

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

All authors declare that they have no financial conflict of interest.

Ethical Standards

All experiments performed by us described in this manuscript were carried out in full compliance with institutional IACUC and IRB approval and were consistent with federal and state laws pertaining to animal and human research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moneeb Ehtesham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehtesham, M., Min, E., Issar, N.M. et al. The role of the CXCR4 cell surface chemokine receptor in glioma biology. J Neurooncol 113, 153–162 (2013). https://doi.org/10.1007/s11060-013-1108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1108-4

Keywords

Navigation