Skip to main content

Advertisement

Log in

Expression of stem cell markers in human astrocytomas of different WHO grades

  • Lab investigation - human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

According to new hypotheses astrocytomas/gliomas either arise from or attract neural stem cells. Biological markers, particularly antigenic markers, have played a significant role for the characterization of these tumour stem cells (TSCc). Because these studies have been performed with single experimental samples mostly from gliomas, we investigated the expression of the stem cell markers CD133/Prominin, Nestin, Sox-2, Musashi-1, CXCR4, Flt-4/VEGFR-3 and CD105/Endoglin in 72 astrocytomas of different WHO-grades and compared it to normal adult human brain. Expression of their mRNA was quantified by quantitative RT-PCR, of their protein by counting immunopositive cells. In contrast to normal brain, tumour samples showed a high variability for the expression of all markers. However, their mean expression was significantly increased in astrocytomas, but this depended on the WHO grade only for CD133, Nestin, Sox-2 and Musashi-1. Confocal microscopy revealed that these markers mostly could be co-stained with glial fibrillary acidic protein, a marker for astoglial cells, but less frequently with the proliferation marker Ki-67/MIB-1. These markers sometimes, but not necessarily could be co-stained with each other in complex patterns. Our results show that most astrocytomas contain considerable portions of cells expressing stem cell markers. It appears that some of these cells originate from tumour genesis (supporting the stem cell hypothesis) while others are attracted by the tumours. Further functional markers are required to differentiate these TSC-types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NSC:

Neural stem cell

TSC:

Tumour stem cell

HSC:

Hematopoietic stem cell

NBT:

Normal brain tissue

IHC:

Immunohistochemistry

RE:

Real-time reverse-transcription polymerase chain reaction

RT-PCR:

Reverse-transcription polymerase chain reaction

GFAP:

Glial fibrillary acidic protein

WHO:

World Health Organization

References

  1. Mahaley MS Jr, Mettlin C, Natarajan N, Laws ER Jr, Peace B (1989) National survey of patterns of care for brain-tumour patients. J Neurosurg 71:826–836

    Article  PubMed  Google Scholar 

  2. Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC (1995) Histopathology, classification, and grading of gliomas. Glia 15:211–221

    Article  PubMed  CAS  Google Scholar 

  3. Nozaki M, Tada M, Kobayashi H, Zhang CL, Sawamura Y, Abe H, Ishii N, Van Meir EG (1999) Roles of the functional loss of p53 and other genes in astrocytoma tumourigenesis and progression. Neuro-Oncol 1:124–137

    PubMed  CAS  Google Scholar 

  4. von Deimling A, Louis DN, Wiestler OD (1995) Molecular pathways in the formation of gliomas. Glia 15:328–338

    Article  Google Scholar 

  5. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumours. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  6. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum H (2003) Cancerous stem cells can arise from pediatric brain tumours. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  7. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumourigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  8. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  9. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, Weiner H, Ruiz i Altaba A (2001) The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumourigenesis. Development 128:5201–5212

    PubMed  CAS  Google Scholar 

  10. Ruiz i Altaba A, Sanchez P, Dahmane N (2002) Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2:361–372

    Article  PubMed  CAS  Google Scholar 

  11. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

  12. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  13. Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    Article  PubMed  CAS  Google Scholar 

  14. You H, Kim YI, Im SY, Suh-Kim H, Paek SH, Park SH, Kim DG, Jung HW (2005) Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma. J Neuro-Oncol 74:1–8

    Article  Google Scholar 

  15. Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW (2003) c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5:198–204

    PubMed  CAS  Google Scholar 

  16. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  PubMed  CAS  Google Scholar 

  17. Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    PubMed  CAS  Google Scholar 

  18. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumourigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  19. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  20. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumourigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  21. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumourigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  PubMed  CAS  Google Scholar 

  22. Nilsson L, Astrand-Grundstrom I, Arvidsson I, Jacobsson B, Hellstrom-Lindberg E, Hast R, Jacobsen SE (2000) Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 96:2012–2021

    PubMed  CAS  Google Scholar 

  23. Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F (2005) Cancer stem cell characteristics in retinoblastoma. Mol Vis 11:729–737

    PubMed  CAS  Google Scholar 

  24. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumour cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  25. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  26. Reiss K, Mentlein R, Sievers J, Hartmann D (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115:295–305

    Article  PubMed  CAS  Google Scholar 

  27. Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Breant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL (2006) VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 9:340–348

    Article  PubMed  CAS  Google Scholar 

  28. Henriksen R, Gobl A, Wilander E, Oberg K, Miyazono K, Funa K (1995) Expression and prognostic significance of TGF-beta isotypes, latent TGF-beta 1 binding protein, TGF-beta type I and type II receptors, and endoglin in normal ovary and ovarian neoplasms. Lab Invest 73:213–220

    PubMed  CAS  Google Scholar 

  29. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  PubMed  CAS  Google Scholar 

  30. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumours contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  31. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C, Alessandri G, Marras C, Croci D, De Rossi M (2006) Glioblastoma-derived tumourspheres identify a population of tumour stem-like cells with angiogenic potential and enhanced multidrug resistence phenotype. Glia 54:850–860

    Article  PubMed  Google Scholar 

  32. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  PubMed  CAS  Google Scholar 

  33. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  34. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    Article  PubMed  CAS  Google Scholar 

  35. Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765

    Article  PubMed  CAS  Google Scholar 

  36. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  PubMed  CAS  Google Scholar 

  37. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786

    Article  PubMed  CAS  Google Scholar 

  38. Almqvist PM, Mah R, Lendahl U, Jacobsson B, Hendson G (2002) Immunohistochemical detection of nestin in pediatric brain tumours. J Histochem Cytochem 50:147–158

    PubMed  CAS  Google Scholar 

  39. Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumour cells. Lab Invest 66:303–313

    PubMed  CAS  Google Scholar 

  40. Hockfield S, McKay RD (1985) Identification of major cell classes in the developing mammalian nervous system. J Neurosci 5:3310–3328

    PubMed  CAS  Google Scholar 

  41. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  PubMed  CAS  Google Scholar 

  42. Gu H, Wang S, Messam CA, Yao Z (2002) Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res 943:174–180

    Article  PubMed  CAS  Google Scholar 

  43. Lu G, Kwong WH, Li Q, Wang X, Feng Z, Yew DT (2005) bcl2, bax, and nestin in the brains of patients with neurodegeneration and those of normal aging. J Mol Neurosci 27:167–174

    Article  PubMed  Google Scholar 

  44. Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS (2002) Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res Dev Brain Res 139:9–17

    Article  PubMed  CAS  Google Scholar 

  45. Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469:311–324

    Article  PubMed  CAS  Google Scholar 

  46. Holmin S, Almqvist P, Lendahl U, Mathiesen T (1997) Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury. Eur J Neurosci 9:65–75

    Article  PubMed  CAS  Google Scholar 

  47. Krum JM, Rosenstein JM (1999) Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds. Exp Neurol 160:348–360

    Article  PubMed  CAS  Google Scholar 

  48. Lin RC, Matesic DF, Marvin M, McKay RD, Brustle O (1995) Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol Dis 2:79–85

    Article  PubMed  CAS  Google Scholar 

  49. Li Y, Chopp M (1999) Temporal profile of nestin expression after focal cerebral ischemia in adult rat. Brain Res 838:1–10

    Article  PubMed  CAS  Google Scholar 

  50. Yoo YM, Lee U, Kim YJ (2005) Apoptosis and nestin expression in the cortex and cultured astrocytes following 6-OHDA administration. Neurosci Lett 382:88–92

    Article  PubMed  CAS  Google Scholar 

  51. Schmidt-Kastner R, Humpel C (2002) Nestin expression persists in astrocytes of organotypic slice cultures from rat cortex. Int J Dev Neurosci 20:29–38

    Article  PubMed  CAS  Google Scholar 

  52. Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman SA, Okano H (2001) Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci 17:259–273

    Article  PubMed  CAS  Google Scholar 

  53. van de Wetering M, Oosterwegel M, van Norren K, Clevers H (1993) Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 12:3847–3854

    PubMed  Google Scholar 

  54. Yuan H, Corbi N, Basilico C, Dailey L (1995) Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9:2635–2645

    Article  PubMed  CAS  Google Scholar 

  55. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    Article  PubMed  CAS  Google Scholar 

  56. Brazel CY, Limke TL, Osborne JK, Miura T, Cai J, Pevny L, Rao MS (2005) Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell 4:197–207

    Article  PubMed  CAS  Google Scholar 

  57. Kanemura Y, Mori K, Sakakibara S, Fujikawa H, Hayashi H, Nakano A, Matsumoto T, Tamura K, Imai T, Ohnishi T, Fushiki S, Nakamura Y, Yamasaki M, Okano H, Arita N (2001) Musashi1, an evolutionarily conserved neural RNA-binding protein, is a versatile marker of human glioma cells in determining their cellular origin, malignancy, and proliferative activity. Differentiation 68:141–152

    Article  PubMed  CAS  Google Scholar 

  58. Sakakibara S, Imai T, Hamaguchi K, Okabe M, Aruga J, Nakajima K, Yasutomi D, Nagata T, Kurihara Y, Uesugi S, Miyata T, Ogawa M, Mikoshiba K, Okano H (1996) Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 176:230–242

    Article  PubMed  CAS  Google Scholar 

  59. Sakakibara S, Okano H (1997) Expression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J Neurosci 17:8300–8312

    PubMed  CAS  Google Scholar 

  60. Shu HJ, Saito T, Watanabe H, Ito JI, Takeda H, Okano H, Kawata S (2002) Expression of the Musashi1 gene encoding the RNA-binding protein in human hepatoma cell lines. Biochem Biophys Res Commun 293:150–154

    Article  PubMed  CAS  Google Scholar 

  61. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Del Bo R, Fortunato F, Strazzer S, Salani S, Bresolin N, Comi GP (2005) Multipotentiality, homing properties, and pyramidal neurogenesis of CNS-derived LeX (ssea-1)+/CXCR4+ stem cells. FASEB J 19:1860–1862

    PubMed  CAS  Google Scholar 

  62. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D., Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–35670

    Article  PubMed  CAS  Google Scholar 

  63. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S (2003) VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101:168–172

    Article  PubMed  CAS  Google Scholar 

  64. Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030

    PubMed  CAS  Google Scholar 

  65. Chen CZ, Li L, Li M, Lodish HF (2003) The endoglin (positive) sca-1 (positive) rhodamine (low) phenotype defines a near-homogeneous population of long-term repopulating hematopoietic stem cells. Immunity 19:525–533

    Article  PubMed  Google Scholar 

  66. Chen CZ, Li M, de Graaf D, Monti S, Gottgens B, Sanchez MJ, Lander ES, Golub TR, Green AR, Lodish HF (2002) Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc Natl Acad Sci USA 99:15468–15473

    Article  PubMed  CAS  Google Scholar 

  67. Pierelli L, Bonanno G, Rutella S, Marone M, Scambia G, Leone G (2001) CD105 (endoglin) expression on hematopoietic stem/progenitor cells. Leuk Lymphoma 42:1195–1206

    Article  PubMed  CAS  Google Scholar 

  68. Toda M, Iizuka Y, Yu W, Imai T, Ikeda E, Yoshida K, Kawase T, Kawakami Y, Okano H, Uyemura K (2001) Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 34:1–7

    Article  PubMed  CAS  Google Scholar 

  69. Wilson JM, Sato K, Chernoff EA, Belecky-Adams TL (2007) Expression patterns of chick Musashi-1 in the developing nervous system. Gene Expr Patterns Apr 21, Epub ahead of print

  70. Akasaka Y, Saikawa Y, Fujita K, Kubota T, Ishikawa Y, Fujimoto A, Ishii T, Okano H, Kitajima M (2005) Expression of a candidate marker for progenitor cells, Musashi-1, in the proliferative regions of human antrum and its decreased expression in intestinal metaplasia. Histopathology 47:348–356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brigitte Rehmke, Ute Malcus-Coskun and Jörg Krause for expert technical assistance and Clemens Franke for drawing pictures. This work was supported by an intramural grant of the Universitätsklinikum Schleswig-Holstein, Campus Kiel (JH-F & RM) “Stem cells in brain tumours”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janka Held-Feindt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, YH., Mentlein, R., Knerlich, F. et al. Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol 86, 31–45 (2008). https://doi.org/10.1007/s11060-007-9439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9439-7

Keywords

Navigation