Skip to main content

Advertisement

Log in

Increased tryptophan transport in epileptogenic dysembryoplastic neuroepithelial tumors

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Dysembryoplastic neuroepithelial tumors (DNTs) are typically hypometabolic but can show increased amino acid uptake on positron emission tomography (PET). To better understand mechanisms of amino acid accumulation in epileptogenic DNTs, we combined quantitative α-[11C]methyl-l-tryptophan (AMT) PET with tumor immunohistochemistry. Standardized uptake values (SUVs) of AMT and glucose were measured in 11 children with temporal lobe DNT. Additional quantification for AMT transport and metabolism was performed in 9 DNTs. Tumor specimens were immunostained for the l-type amino acid transporter 1 (LAT1) and indoleamine 2,3-dioxygenase (IDO), a key enzyme of the immunomodulatory kynurenine pathway. All 11 tumors showed glucose hypometabolism, while mean AMT SUVs were higher than normal cortex in eight DNTs. Further quantification showed increased AMT transport in seven and high AMT metabolic rates in three DNTs. Two patients showing extratumoral cortical increases of AMT SUV had persistent seizures despite complete tumor resection. Resected DNTs showed moderate to strong LAT1 and mild to moderate IDO immunoreactivity, with the strongest expression in tumor vessels. These results indicate that accumulation of tryptophan in DNTs is driven by high amino acid transport, mediated by LAT1, which can provide the substrate for tumoral tryptophan metabolism through the kynurenine pathway, that can produce epileptogenic metabolites. Increased AMT uptake can extend to extratumoral cortex, and presence of such cortical regions may increase the likelihood of recurrent seizures following surgical excision of DNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Daumas-Duport C, Scheithauer BW, Chodkiewicz JP, Laws ER Jr, Vedrenne C (1988) Dysembryoplastic neuroepithelial tumor: a surgically curable tumor of young patients with intractable partial seizures. Report of thirty-nine cases. Neurosurgery 23:545–556

    Article  PubMed  CAS  Google Scholar 

  2. Daumas-Duport C (1993) Dysembryoplastic neuroepithelial tumours. Brain Pathol 3:283–295

    Article  PubMed  CAS  Google Scholar 

  3. Raymond AA, Halpin SF, Alsanjari N et al. (1994) Dysembryoplastic neuroepithelial tumor. Features in 16 patients. Brain 117 (Pt 3):461–475

    Google Scholar 

  4. Sharma MC, Jain D, Gupta A et al (2009) Dysembryoplastic neuroepithelial tumor: a clinicopathological study of 32 cases. Neurosurg Rev 32:161–169

    Article  PubMed  Google Scholar 

  5. Kaplan AM, Lawson MA, Spataro J et al (1999) Positron emission tomography using [18F] fluorodeoxyglucose and [11C] l-methionine to metabolically characterize dysembryoplastic neuroepithelial tumors. J Child Neurol 14:673–677

    Article  PubMed  CAS  Google Scholar 

  6. Lee DY, Chung CK et al (2000) Dysembryoplastic neuroepithelial tumor: radiological findings (including PET, SPECT, and MRS) and surgical strategy. J Neurooncol 47:167–174

    Article  PubMed  CAS  Google Scholar 

  7. Phi JH, Paeng JC, Lee HS et al (2010) Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine PET. J Nucl Med 51:728–734

    Article  PubMed  Google Scholar 

  8. Maehara T, Nariai T, Arai N et al (2004) Usefulness of [11C]methionine PET in the diagnosis of dysembryoplastic neuroepithelial tumor with temporal lobe epilepsy. Epilepsia 45:41–45

    Article  PubMed  Google Scholar 

  9. Rosenberg DS, Demarquay G, Jouvet A et al (2005) [11C]-Methionine PET: dysembryoplastic neuroepithelial tumours compared with other epileptogenic brain neoplasms. J Neurol Neurosurg Psychiatry 76:1686–1692

    Article  PubMed  CAS  Google Scholar 

  10. Kasper BS, Struffert T, Kasper EM et al (2011) 18Fluoroethyl-l-tyrosine-PET in long-term epilepsy associated glioneuronal tumors. Epilepsia 52:35–44

    Article  PubMed  Google Scholar 

  11. Juhasz C, Chugani DC, Muzik O et al (2006) In vivo uptake and metabolism of alpha-[11C]methyl-l-tryptophan in human brain tumors. J Cereb Blood Flow Metab 26:345–357

    Article  PubMed  CAS  Google Scholar 

  12. Batista CE, Juhasz C, Muzik O et al (2009) Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol Imaging Biol 11:460–466

    Article  PubMed  Google Scholar 

  13. Juhasz C, Muzik O, Chugani DC et al (2011) Differential kinetics of alpha-[(11)C]methyl-l-tryptophan on PET in low-grade brain tumors. J Neurooncol 102:409–415

    Article  PubMed  CAS  Google Scholar 

  14. Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT (1998) Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-l-tryptophan. Synapse 28:33–43

    Article  PubMed  CAS  Google Scholar 

  15. Chugani DC, Muzik O (2000) Alpha[C-11]methyl-l-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab 20:2–9

    Article  PubMed  CAS  Google Scholar 

  16. Diksic M, Young SN (2001) Study of the brain serotonergic system with labeled alpha-methyl-l-tryptophan. J Neurochem 78:1185–1200

    Article  PubMed  CAS  Google Scholar 

  17. Fedi M, Reutens DC, Andermann F et al (2003) Alpha-[11C]-Methyl-l-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res 52:203–213

    Article  PubMed  Google Scholar 

  18. Juhasz C, Chugani DC, Muzik O et al (2003) Alpha-methyl-l-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology 60:960–968

    PubMed  CAS  Google Scholar 

  19. Kagawa K, Chugani DC, Asano E et al (2005) Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-l-tryptophan positron emission tomography (PET). J Child Neurol 20:429–438

    Article  PubMed  Google Scholar 

  20. Wakamoto H, Chugani DC, Juhasz C, Muzik O, Kupsky WJ, Chugani HT (2008) Alpha-methyl-l-tryptophan positron emission tomography in epilepsy with cortical developmental malformations. Pediatr Neurol 39:181–188

    Article  PubMed  Google Scholar 

  21. Chugani HT, Kumar A, Kupsky W, Asano E, Sood S, Juhász C (2011) Clinical and histopathological correlates of 11C-alpha-methyl-l-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia 52:1692–1698

    Article  PubMed  CAS  Google Scholar 

  22. Liimatainen S, Lehtimaki K, Raitala A et al (2011) Increased indoleamine 2,3-dioxygenase (IDO) activity in idiopathic generalized epilepsy. Epilepsy Res 94:206–212

    Article  CAS  Google Scholar 

  23. Majoie HJ, Rijkers K, Berfelo MW et al (2011) Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation 18:52–56

    Article  PubMed  CAS  Google Scholar 

  24. Miyazaki T, Moritake K, Yamada K et al (2009) Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy. Laboratory investigation. J Neurosurg 111:230–237

    Article  PubMed  CAS  Google Scholar 

  25. Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T (2010) Correlation of L-methyl-11C-methionine (MET) uptake with l-type amino acid transporter 1 in human gliomas. J Neurooncol 99:217–225

    Article  PubMed  CAS  Google Scholar 

  26. Cizek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22:434–442

    Article  PubMed  Google Scholar 

  27. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  PubMed  CAS  Google Scholar 

  28. Roelcke U, Radu E, Ametamey S, Pellikka R, Steinbrich W, Leenders KL (1996) Association of rubidium and C-methionine uptake in brain tumors measured by positron emission tomography. J Neurooncol 27:163–171

    Article  PubMed  CAS  Google Scholar 

  29. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–445

    PubMed  CAS  Google Scholar 

  30. Sadeghi N, Salmon I, Tang BN et al (2006) Correlation between dynamic susceptibility contrast perfusion MRI and methionine metabolism in brain gliomas: preliminary results. J Magn Reson Imaging 24:989–994

    Article  PubMed  Google Scholar 

  31. Di Ieva A, Grizzi F, Tschabitscher M et al (2010) Correlation of microvascular fractal dimension with positron emission tomography [(11)C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80:267–273

    Article  PubMed  CAS  Google Scholar 

  32. Duelli R, Enerson BE, Gerhart DZ, Drewes LR (2000) Expression of large amino acid transporter LAT1 in rat brain endothelium. J Cereb Blood Flow Metab 20:1557–1562

    Article  PubMed  CAS  Google Scholar 

  33. Kageyama T, Nakamura M, Matsuo A et al (2000) The 4F2hc/LAT1 complex transports l-DOPA across the blood–brain barrier. Brain Res 879:115–121

    Article  PubMed  CAS  Google Scholar 

  34. Umeki N, Fukasawa Y, Ohtsuki S (2002) mRNA expression and amino acid transport characteristics of cultured human brain microvascular endothelial cells (hBME). Drug Metab Pharmacokinet 17:367–373

    Article  PubMed  CAS  Google Scholar 

  35. Nawashiro H, Otani N, Shinomiya N et al (2006) l-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer 119:484–492

    Article  PubMed  CAS  Google Scholar 

  36. Lim BC, Cho KY, Lim JS et al (2011) Increased expression of l-amino acid transporters in balloon cells of tuberous sclerosis. Childs Nerv Syst 27:63–70

    Article  PubMed  Google Scholar 

  37. Ozaki Y, Edelstein MP, Duch DS (1988) Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gamma. Proc Natl Acad Sci U S A 85:1242–1246

    Article  PubMed  CAS  Google Scholar 

  38. Burke F, Knowles RG, East N, Balkwill FR (1995) The role of indoleamine 2,3-dioxygenase in the anti-tumour activity of human interferon-gamma in vivo. Int J Cancer 60:115–122

    Article  PubMed  CAS  Google Scholar 

  39. Uyttenhove C, Pilotte L, Theate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  PubMed  CAS  Google Scholar 

  40. Riesenberg R, Weiler C, Spring O et al (2007) Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res 13:6993–7002

    Article  PubMed  CAS  Google Scholar 

  41. Ravizza T, Boer K, Redeker S et al (2006) The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis 24:128–143

    Article  PubMed  CAS  Google Scholar 

  42. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803

    Article  PubMed  CAS  Google Scholar 

  43. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40

    Article  PubMed  CAS  Google Scholar 

  44. Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med 85:1351–1359

    Article  PubMed  Google Scholar 

  45. Ryu HJ, Kim JE, Kim MJ et al (2010) The protective effects of interleukin-18 and interferon-gamma on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience 170:711–721

    Article  PubMed  CAS  Google Scholar 

  46. Juhasz C, Chugani DC, Padhye UN et al (2004) Evaluation with alpha-[11C]methyl-l-tryptophan positron emission tomography for reoperation after failed epilepsy surgery. Epilepsia 45:124–130

    Article  PubMed  Google Scholar 

  47. Aubert S, Wendling F, Regis J et al (2009) Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain 132:3072–3086

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from the National Institutes of Health (NIH, CA123451 to C.J.) and Start-up Funds (Wayne State University School of Medicine to S.M.). We thank Pulak Chakraborty, PhD, for AMT radiochemistry and Sam Kiousis, BS, for skilled technical assistance with immunohistochemistry. We are grateful to the entire staff at the PET Center, Children’s Hospital of Michigan, who provided invaluable technical help in performing the PET scans.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Juhász.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkonyi, B., Mittal, S., Zitron, I. et al. Increased tryptophan transport in epileptogenic dysembryoplastic neuroepithelial tumors. J Neurooncol 107, 365–372 (2012). https://doi.org/10.1007/s11060-011-0750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0750-y

Keywords

Navigation