Skip to main content

Advertisement

Log in

Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (1H-MRS): initial results

  • Clinical Study – Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We compared pentavalent technetium-99m dimercaptosuccinic acid (Tc-99m (V) DMSA) brain single photon emission computed tomography (SPECT) and proton magnetic resonance spectroscopy (1H-MRS) for the detection of residual or recurrent gliomas after surgery and radiotherapy. A total of 24 glioma patients, previously operated upon and treated with radiotherapy, were studied. SPECT was acquired 2–3 h post-administration of 555–740 MBq of Tc-99m (V) DMSA. Lesion to normal (L/N) delayed uptake ratio was calculated as: mean counts of tumor ROI (L)/mean counts of normal mirror symmetric ROI (N). 1H-MRS was performed using a 1.5-T scanner equipped with a spectroscopy package. SPECT and 1H-MRS results were compared with pathology or follow-up neuroimaging studies. SPECT and 1H-MRS showed concordant residue or recurrence in 9/24 (37.5%) patients. Both were true negative in 6/24 (25%) patients. SPECT and 1H-MRS disagreed in 9 recurrences [7/9 (77.8%) and 2/9 (22.2%) were true positive by SPECT and 1H-MRS, respectively]. Sensitivity of SPECT and 1H-MRS in detecting recurrence was 88.8 and 61.1% with accuracies of 91.6 and 70.8%, respectively. A positive association between the delayed L/N ratio and tumor grade was found; the higher the grade, the higher is the L/N ratio (r = 0.62, P = 0.001). Tc-99m (V) DMSA brain SPECT is more accurate compared to 1H-MRS for the detection of tumor residual tissues or recurrence in glioma patients with previous radiotherapy. It allows early and non-invasive differentiation of residual tumor or recurrence from irradiation necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexiou GA, Tsiouris S, Kyritsis AP, Voulgaris S, Argyropoulou MI, Fotopoulos AD (2009) Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities. J Neurooncol 95:1–11

    Article  PubMed  Google Scholar 

  2. Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111:197–212

    Article  PubMed  CAS  Google Scholar 

  3. Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, Comstock B, Jarvik JG (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. Am J Neuroradiol 27:1404–1411

    PubMed  CAS  Google Scholar 

  4. Denoyer D, Perek N, Le Jeune N, Frere D, Dubois F (2004) Evidence that 99mTc-(V)-DMSA uptake is mediated by NaPi cotransporter type III in tumour cell lines. Eur J Nucl Med Mol Imaging 31:77–84

    Article  PubMed  CAS  Google Scholar 

  5. Denoyer D, Perek N, Le Jeune N, Cornillon J, Dubois F (2005) Correlation between 99mTc-(V)-DMSA uptake and constitutive level of phosphorylated focal adhesion kinase in an in vitro model of cancer cell lines. Eur J Nucl Med Mol Imaging 32:820–827

    Article  PubMed  CAS  Google Scholar 

  6. Tsiouris S, Pirmettis I, Chatzipanagiotou T, Ptohis N, Papantoniou V (2007) Pentavalent technetium-99m dimercaptosuccinic acid 99mTc-(V) DMSA brain scintitomography a plausible non-invasive depicter of glioblastoma proliferation and therapy response. J Neurooncol 85:291–295

    Article  PubMed  CAS  Google Scholar 

  7. Barai S, Bandopadhayaya G, Julka P, Malhotra A, Naik K, Haloi A, Seith A, Halanaik D (2004) Imaging of recurrent brain tumors with trivalent (99m) Tc-dimercaptosuccinic acid-initial results. Hell J Nucl Med 7:44–47

    PubMed  Google Scholar 

  8. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  9. Hirano T, Tomiyoshi K, Zhang Ying Jian, Ishida T.Inoue T, Endo K (1994) Preparation and clinical evaluation of 99mTc-DMSA for tumor scintigraphy. Eur J Nucl Med 21:82–85

    Article  PubMed  CAS  Google Scholar 

  10. Henze M, Mohammed A, Schlemmer HP, Herfarth KK, Hoffner S, Haufe S, Mier W, Eisenhut M, Debus J, Haberkorn U (2004) PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver-operating-characteristic analysis. J Nucl Med 45:579–586

    PubMed  Google Scholar 

  11. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2:494–503

    Article  PubMed  Google Scholar 

  12. Central Brain Tumor Registry of the United States. http://www.CBTRUS.org

  13. Burton EC, Prados MD (2000) Malignant gliomas. Curr Treat Options Oncol 1:459–468

    Article  PubMed  CAS  Google Scholar 

  14. Byrne TN (1994) Imaging of gliomas. Semin Oncol 21:162–171

    PubMed  CAS  Google Scholar 

  15. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481

    Article  PubMed  Google Scholar 

  16. Benard F, Romsa J, Hustinx R (2002) Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 33:148–162

    Article  Google Scholar 

  17. Soler C, Beauchesne P, Maatougui K, Schmitt T, Barral FG, Michel D, Dubois F, Brunon J (1998) Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 25:1649–1657

    Article  PubMed  CAS  Google Scholar 

  18. Hirano T, Otake H, Kazama K, Wakabayashi K, Zama A, Shibasaki T, Tamura M, Endo K (1997) Technetium-99m (V)-DMSA and thallium-201 in brain tumor imaging: correlation with histology and malignant grade. J Nucl Med 38:1741–1749

    PubMed  CAS  Google Scholar 

  19. Goldman S (1996) Regional glucose metabolism and histopathology of gliomas: a study based on PET-guided stereotactic biopsy. Cancer 78:1098–1106

    Article  PubMed  CAS  Google Scholar 

  20. Yoshii Y, Satou M, Yamamoto T, Yamada Y, Hyodo A, Nose T, Ishikawa H, Hatakeyama R (1993) The role of thallium-201 single photon emission tomography in the investigation and characterisation of brain tumours in man and their response to treatment. Eur J Nucl Med 20:39–45

    Article  PubMed  CAS  Google Scholar 

  21. Macapinlac H, Scott A, Caluser C et al (1992) Comparison of T1–201 and Tc-99m–2-methoxy isobutyl isonitrile (MIBI) with MRI in the evaluation of recurrent brain tumors. J Nucl Med 33:867

    Google Scholar 

  22. Vos MJ, Tony BN, Hoekstra OS, Postma TJ, Heimans JJ, Hooft L (2007) Systematic review of the diagnostic accuracy of 201 Tl single photon emission computed tomography in the detection of recurrent glioma. Nucl Med Commun 28:431–439

    Article  PubMed  Google Scholar 

  23. Kosuda S, Fujii H, Aoki S, Suzuki K, Tanaka Y, Nakamura O, Shidara N (1993) Reassessment of quantitative thallium-201 brain SPECT for miscellaneous brain tumors. Ann Nucl Med 7:257–263

    Article  PubMed  CAS  Google Scholar 

  24. Sasaki M, Ichiya Y, Kuwabara Y, Yoshida T, Inoue T, Morioka T, Hisada K, Fukui M, Masuda K (1996) Hyperperfusion and hypermetabolism in brain radiation necrosis with epileptic activity. J Nucl Med 37:1174–1176

    PubMed  CAS  Google Scholar 

  25. Yoshii Y, Moritake T, Suzuki K, Fujita K, Nose T, Satou M (1996) Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT. ANJR Am J Neuroradiol 17:1773–1776

    CAS  Google Scholar 

  26. Le Jeune FP, Dubois F, Blond S, Steinling M (2006) Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neurooncol 77:177–183

    Article  PubMed  Google Scholar 

  27. Borodin OYU, Velichko OB, Garganeev AB et al (2000) Comparison of 99mTc-MIBI SPECT and GD-enhanced MRI in detection of recurrent tumor in malignant. Eur J Nucl Med 27:154

    Google Scholar 

  28. Palumbo B, Lupattelli M, Pelliccioli GP, Chiarini P, Moschini TO, Palumbo I, Siepi D, Buoncristiani P, Nardi M, Giovenali P, Palumbo R (2006) Association of 99mTc-MIBI brain SPECT and proton magnetic resonance spectroscopy (1H-MRS) to assess glioma recurrence after radiotherapy. Q J Nucl Med Mol Imaging 50:88–93

    PubMed  CAS  Google Scholar 

  29. Feun LG, Savaraj N, Landy HJ (1994) Drug resistance in brain tumors. J Neurooncol 20:165–176

    Article  PubMed  CAS  Google Scholar 

  30. Lehnert M (1994) Multidrug resistance in human cancer. J Neurooncol 22:239–243

    Article  PubMed  CAS  Google Scholar 

  31. Andrews DW, Das R, Kim S, Zhang J, Curtis M (1994) Technetium-MIBI as a glioma imaging agent for the assessment of multi-drug resistance. Neurosurgery 40:1323–1332

    Article  Google Scholar 

  32. Ballinger JR, Sheldon KM, Boxen I, Erlichman C, Ling V (1995) Differences between accumulation of 99mTc-MIBI and 201Tl-thallous chloride in tumour cells: role of P-glycoprotein. Q J Nucl Med 39:122–128

    PubMed  CAS  Google Scholar 

  33. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 53:977–984

    PubMed  CAS  Google Scholar 

  34. Shibata Y, Matsumura A, Nose T (2002) Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors. Neurol Med Chir (Tokyo) 42:325–330

    Article  Google Scholar 

  35. Hirano T, Otake H, Shibasaki T, Tamura M, Endo K (1997) Differentiating histologic malignancy of primary brain tumors: pentavalent technetium-99m-DMSA. J Nucl Med 38:20–26

    PubMed  CAS  Google Scholar 

  36. Samnick S, Bader JB, Hellwig D, Moringlane JR, Alexander C, Romeike BF, Feiden W, Kirsch CM (2002) Clinical value of iodine-123-alpha-methyl-l-tyrosine single-photon emission tomography in the differential diagnosis of recurrent brain tumor in patients pretreated for glioma at follow-up. J Clin Oncol 20:396–404

    Article  PubMed  Google Scholar 

  37. Kuwert T, Woesler B, Morgenroth C, Lerch H, Schäfers M, Palkovic S, Matheja P, Brandau W, Wassmann H, Schober O (1998) Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 39:23–27

    PubMed  CAS  Google Scholar 

  38. Kim EE, Chung SK, Haynie TP, Kim CG, Cho BJ, Podoloff DA, Tilbury RS, Yang DJ, Yung WK, Moser RP Jr, Ajani JA (1992) Differentiation of residual or recurrent tumors from post-treatment changes in F-18 FDG PET. Radiographics 12:269–279

    PubMed  CAS  Google Scholar 

  39. Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK (1988) PET of malignant cerebral tumors after interstitial brachytherapy. demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69:830–838

    Article  PubMed  CAS  Google Scholar 

  40. Glantz MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, Herndon JE 2nd, Meisler WJ, Schold SC Jr (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 29:347–355

    Article  PubMed  CAS  Google Scholar 

  41. Ogawa T, Kanno I, Shishido F, Inugami A, Higano S, Fujita H, Murakami M, Uemura K, Yasui N, Mineura K et al (1991) Clinical value of PET with [18F]fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202

    Article  PubMed  CAS  Google Scholar 

  42. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? Am J Neuroradiol 19:407–413

    PubMed  CAS  Google Scholar 

  43. Olivero WC, Dulebohn SC, Lister JR (1995) The use of PET in evaluating patients with primary brain tumors: is it useful? J Neurol Neurosurg Psychiatry 58:250–252

    Article  PubMed  CAS  Google Scholar 

  44. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, Hosokawa M, Kohanawa M, Tamaki N (2001) FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 42:1551–1555

    PubMed  CAS  Google Scholar 

  45. Carvalho PA, Schwartz RB, Alexander E 3rd, Garada BM, Zimmerman RE, Loeffler JS, Holman BL (1992) Detection of recurrent gliomas with quantitative thallium-201/technetium-99m HMPAO single-photon emission computerized tomography. J Neurosurg 77:565–570

    Article  PubMed  CAS  Google Scholar 

  46. Byrne TN (1994) Imaging of gliomas. Semin Oncol 21:162–171

    PubMed  CAS  Google Scholar 

  47. Leeds NE, Jackson EF (1994) Current imaging techniques for the evaluation of brain neoplasms. Curr Opin Oncol 6:254–261

    Article  PubMed  CAS  Google Scholar 

  48. Kallén K, Burtscher IM, Holtås S, Ryding E, Rosén I (2000) 201Thallium SPECT and 1H-MRS compared with MRI in chemotherapy monitoring of high-grade malignant astrocytomas. J Neurooncol 46:173–185

    Article  PubMed  Google Scholar 

  49. Young RJ, Ghesani MV, Kagetsu NJ, Derogatis AJ (2005) Lesion size determines accuracy of thallium-201 brain single-photon emission tomography in differentiating between intracranial malignancy and infection in AIDS patients. Am J Neuroradiol 26:1973–1979

    PubMed  Google Scholar 

  50. Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, Mikkelsen T (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54:1111–1117; discussion 1117–9

    Article  PubMed  Google Scholar 

  51. Chong VF, Rumpel H, Aw YS, Ho GL, Fan YF, Chua EJ (1999) Temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma: 1H MR spectroscopic findings. Int J Radiat Oncol Biol Phys 45:699–705

    Article  PubMed  CAS  Google Scholar 

  52. Schlemmer HP, Bachert P, Henze M, Buslei R, Herfarth KK, Debus J, van Kaick G (2002) Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 44:216–222

    Article  PubMed  CAS  Google Scholar 

  53. Schlemmer HP, Bachert P, Herfarth K, Zuna I, Debus J, van Kaick G (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. Am J Neuroradiol 22:1316–1324

    PubMed  CAS  Google Scholar 

  54. Chong VF, Rumpel H, Fan YF, Mukherji SK (2001) Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 11:317–324

    Article  PubMed  CAS  Google Scholar 

  55. Ando K, Ishikura R, Nagami Y, Morikawa T, Takada Y, Ikeda J, Nakao N, Matsumoto T, Arita N (2004) Usefulness of Cho/Cr ratio in proton MR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nippon Igaku Hoshasen Gakkai Zasshi 64:121–126

    PubMed  CAS  Google Scholar 

  56. Plotkin M, Eisenacher J, Bruhn H, Wurm R, Michel R, Stockhammer F, Feussner A, Dudeck O, Wust P, Felix R, Amthauer H (2004) 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol 70:49–58

    Article  PubMed  Google Scholar 

  57. Lichy MP, Henze M, Plathow C, Bachert P, Kauczor HU, Schlemmer HP (2004) Metabolic imaging to follow stereotactic radiation of gliomas–the role of 1H MR spectroscopy in comparison to FDG-PET and IMT-SPECT. Rofo 176:1114–1121

    Article  PubMed  CAS  Google Scholar 

  58. Tzika AA, Zarifi MK, Goumnerova L, Astrakas LG, Zurakowski D, Young-Poussaint T, Anthony DC, Scott RM, Black PM (2002) Neuroimaging in pediatric brain tumors: Gd-DTPA-enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging. Am J Neuroradiol 23:322–333

    PubMed  Google Scholar 

  59. Wald LL, Nelson SJ, Day MR, Noworolski SE, Henry RG, Huhn SL, Chang S, Prados MD, Sneed PK, Larson DA, Wara WM, McDermott M, Dillon WP, Gutin PH, Vigneron DB (1997) Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg 87:525–534

    Article  PubMed  CAS  Google Scholar 

  60. McKnight TR, von dem Bussche MH, Vigneron DB, Lu Y, Berger MS, McDermott MW, Dillon WP, Graves EE, Pirzkall A, Nelson SJ (2002) Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 97:794–802

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, A., Moustafa, H., Ahmed, E. et al. Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (1H-MRS): initial results. J Neurooncol 106, 579–587 (2012). https://doi.org/10.1007/s11060-011-0694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0694-2

Keywords

Navigation