Skip to main content

Advertisement

Log in

Usefulness of dual isotope 123I-IMP and 201Tl SPECT for the diagnosis of primary central nervous system lymphoma and glioblastoma

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Preoperative differential diagnosis between primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is important because these tumors require different surgical strategies. This study investigated the usefulness of dual isotope, iodine-123-labeled N-isopropyl-p-iodo-amphetamine (123I-IMP) and thallium-201 chloride single-photon emission computed tomography (201Tl SPECT) for the differential diagnosis.

Methods

Twenty-five PCNSL patients and 27 GBM patients who underwent dual isotope imaging, 123I-IMP and 201Tl SPECT, are included. Tumor-to-normal (T/N) ratio was calculated from the ratio of maximum tracer counts in the lesion to the mean counts in the contralateral cerebral cortex. The mean and minimum apparent diffusion coefficient values (ADCmean and ADCmin, respectively) on magnetic resonance imaging were also analyzed.

Results

Delayed phase 123I-IMP SPECT was the most useful imaging examination for the differentiation between PCNSL and GBM compared with early phase 123I-IMP SPECT, early and delayed phase 201Tl SPECT, ADCmean, and ADCmin. However, the median T/N ratios of PCNSL and GBM were 1.32 and 0.83, respectively, in the delayed phase 123I-IMP SPECT. On the other hand, the median T/N ratios of PCNSL and GBM were 3.10 and 2.34, respectively, in the delayed phase 201Tl SPECT, with excellent tumor detection.

Conclusion

Delayed phase 123I-IMP SPECT could differentiate between PCNSL and GBM with high accuracy, but T/N ratio was low and tumor detection was poor. 201Tl SPECT was useful for estimation of the malignancy and localization of the tumors with high T/N ratio. Dual isotope 123I-IMP and 201Tl SPECT was useful for the preoperative diagnosis of PCNSL and GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanai N, Polley MY, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  2. Fox CP, Fox CP, Phillips EH et al (2019) Guidelines for the diagnosis and management of primary central nervous system diffuse large B-cell lymphoma. Br J Haematol 184:348–363

    Article  PubMed  Google Scholar 

  3. Wen JB, Huang WY, Xu WX et al (2017) Differentiating primary central nervous system lymphomas from glioblastomas and inflammatory demyelinating pseudotumor using relative minimum apparent diffusion coefficients. J Comput Assist Tomogr 41:904–909

    Article  PubMed  Google Scholar 

  4. Lin X, Lee M, Buck O et al (2017) Diagnostic accuracy of T1-weighted dynamic contrast-enhanced-MRI and DWI-ADC for differentiation of glioblastoma and primary CNS lymphoma. AJNR Am J Neuroradiol 38:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahn SJ, Shin HJ, Chang JH et al (2014) Differentiation between primary cerebral lymphoma and glioblastoma using the apparent diffusion coefficient: comparison of three different ROI methods. PLoS One 9:e112948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yamashita K, Yoshiura T, Hiwatashi A et al (2013) Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and 18F-fluorodeoxyglucose positron emission tomography. Neuroradiology 55:135–143

    Article  PubMed  Google Scholar 

  7. Makino K, Hirai T, Nakamura H et al (2011) Does adding FDG-PET to MRI improve the differentiation between primary cerebral lymphoma and glioblastoma? Observer performance study. Ann Nucl Med 25:432–438

    Article  PubMed  Google Scholar 

  8. Yamaguchi S, Hirata K, Kobayashi H et al (2014) The diagnostic role of (18)F-FDG PET for primary central nervous system lymphoma. Ann Nucl Med 28:603–609

    Article  CAS  PubMed  Google Scholar 

  9. Hustinx R, Smith RJ, Benard F et al (1999) Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 26:1501–1509

    Article  CAS  PubMed  Google Scholar 

  10. Dethy S, Goldman S, Blecic S et al (1994) Carbon-11-methionine and fluorine-18-FDG PET study in brain hematoma. J Nucl Med 35:1162–1166

    CAS  PubMed  Google Scholar 

  11. Tsuyuguchi N, Sunada I, Ohata K et al (2003) Evaluation of treatment effects in brain abscess with positron emission tomography: comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. Ann Nucl Med 17:47–51

    Article  PubMed  Google Scholar 

  12. Schiepers C, Van Hecke P, Vandenberghe R et al (1997) Positron emission tomography, magnetic resonance imaging and proton NMR spectroscopy of white matter in multiple sclerosis. Mult Scler 3:8–17

    Article  CAS  PubMed  Google Scholar 

  13. Kawai N, Miyake K, Yamamoto Y et al (2013) 18F-FDG PET in the diagnosis and treatment of primary central nervous system lymphoma. Biomed Res Int 2013:247152

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gao H, Jiang X (2013) Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging 13:466–481

    Article  PubMed  PubMed Central  Google Scholar 

  15. Akiyama Y, Moritake K, Yamasaki T et al (2000) The diagnostic value of 123I-IMP SPECT in non-Hodgkin’s lymphoma of the central nervous system. J Nucl Med 41:1777–1783

    CAS  PubMed  Google Scholar 

  16. Yoshikai T, Fukahori T, Ishimaru J et al (2001) 123I-IMP SPET in the diagnosis of primary central nervous system lymphoma. Eur J Nucl Med 28:25–32

    Article  CAS  PubMed  Google Scholar 

  17. Shinoda J, Yano H, Murase S et al (2003) High 123I-IMP retention on SPECT image in primary central nervous system lymphoma. J Neurooncol 61:261–265

    Article  PubMed  Google Scholar 

  18. Kuwako T, Mizumura S, Murakami R et al (2013) Voxel-based analysis of (201)Tl SPECT for grading and diagnostic accuracy of gliomas: comparison with ROI analysis. Ann Nucl Med 27:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Otsuka H, Shinbata H, Hieda M et al (2002) The retention indices of 201Tl-SPECT in brain tumors. Ann Nucl Med 16:455–459

    Article  PubMed  Google Scholar 

  20. Sun D, Liu Q, Liu W et al (2000) Clinical application of 201Tl SPECT imaging of brain tumors. J Nucl Med 41:5–10

    CAS  PubMed  Google Scholar 

  21. Asano K, Takeda T, Nakano T et al (2010) Correlation of MIB-1 staining index and (201)Tl-SPECT retention index in preoperative evaluation of malignancy of brain tumors. Brain Tumor Pathol 27:1–6

    Article  CAS  PubMed  Google Scholar 

  22. Taki S, Kakuda K, Kakuma K et al (1999) 201Tl SPET in the differential diagnosis of brain tumours. Nucl Med Commun 20:637–645

    Article  CAS  PubMed  Google Scholar 

  23. Katano H, Karasawa K, Sugiyama N et al (2002) Comparison of thallium-201 uptake and retention indices for evaluation of brain lesions with SPECT. J Clin Neurosci 9:653–658

    Article  PubMed  Google Scholar 

  24. Matsunaga S, Shuto T, Takase H et al (2013) Semiquantitative analysis using thallium-201 SPECT for differential diagnosis between tumor recurrence and radiation necrosis after gamma knife surgery for malignant brain tumors. Int J Radiat Oncol Biol Phys 85:47–52

    Article  PubMed  Google Scholar 

  25. Tie J, Gunawardana DH, Rosenthal MA (2008) Differentiation of tumor recurrence from radiation necrosis in high-grade gliomas using 201Tl-SPECT. J Clin Neurosci 15:1327–1334

    Article  PubMed  Google Scholar 

  26. Serizawa T, Saeki N, Higuchi Y et al (2005) Diagnostic value of thallium-201 chloride single-photon emission computerized tomography in differentiating tumor recurrence from radiation injury after gamma knife surgery for metastatic brain tumors. J Neurosurg 102(Suppl):266–271

    Article  PubMed  Google Scholar 

  27. Malikova H, Koubska E, Weichet J et al (2016) Can morphological MRI differentiate between primary central nervous system lymphoma and glioblastoma? Cancer Imaging 16:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  PubMed  Google Scholar 

  29. Tang YZ, Booth TC, Bhogal P et al (2011) Imaging of primary central nervous system lymphoma. Clin Radiol 66:768–777

    Article  CAS  PubMed  Google Scholar 

  30. Bataille B, Delwail V, Menet E et al (2000) Primary intracerebral malignant lymphoma: report of 248 cases. J Neurosurg 92:261–266

    Article  CAS  PubMed  Google Scholar 

  31. Senocak E, Oguz KK, Ozgen B et al (2011) Parenchymal lymphoma of the brain on initial MR imaging: a comparative study between primary and secondary brain lymphoma. Eur J Radiol 79:288–294

    Article  PubMed  Google Scholar 

  32. Lin X, Khan IRA, Seet YHC et al (2020) Atypical radiological findings of primary central nervous system lymphoma. Neuroradiology 62:669–676

    Article  PubMed  Google Scholar 

  33. Iida H, Akutsu T, Endo K et al (1996) A multicenter validation of regional cerebral blood flow quantitation using [123I] iodoamphetamine and single photon emission computed tomography. J Cereb Blood Flow Metab 16:781–793

    Article  CAS  PubMed  Google Scholar 

  34. Iida H, Nakagawara J, Hayashida K et al (2010) Multicenter evaluation of a standardized protocol for rest and acetazolamide cerebral blood flow assessment using a quantitative SPECT reconstruction program and split-dose 123I-iodoamphetamine. J Nucl Med 51:1624–1631

    Article  PubMed  Google Scholar 

  35. Nakano S, Kinoshita K, Jinnouchi S et al (1988) Unusual uptake and retention of I-123 IMP in brain tumors. Clin Nucl Med 13:742–747

    Article  CAS  PubMed  Google Scholar 

  36. Nishimura T, Hayashida K, Uehara T et al (1988) Two patients with meningioma visualized as high uptake by SPECT with N-isopropyl-p-iodo-amphetamine (I-123). Neuroradiology 30:351–354

    Article  CAS  PubMed  Google Scholar 

  37. Nishizawa S, Higa T, Kuroda Y et al (1990) Increased accumulation of N-isopropyl-(I-123)p-iodoamphetamine in bronchial carcinoid tumor. J Nucl Med 31:240–242

    CAS  PubMed  Google Scholar 

  38. Black KL, Hawkins RA, Kim KT et al (1989) Use of thallium-201 SPECT to quantitate malignancy grade of gliomas. J Neurosurg 71:342–346

    Article  CAS  PubMed  Google Scholar 

  39. Oriuchi N, Tamura M, Shibazaki T et al (1993) Clinical evaluation of thallium-201 SPECT in supratentorial gliomas: relationship to histologic grade, prognosis and proliferative activities. J Nucl Med 34:2085–2089

    CAS  PubMed  Google Scholar 

  40. Nagai H, Yamasaki T, Yamamoto Y et al (2004) Evaluation of brain tumors by simultaneous dual isotope SPECT with 201Tl-chloride and 99mTc-MIBI [in Japanese]. No Shinkei Geka 32:1029–1037

    PubMed  Google Scholar 

  41. Schwartz RB, Holman BL, Polak JF et al (1998) Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg 89:60–68

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz RB, Carvalho PA, Alexander E 3rd et al (1991) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. AJNR Am J Neuroradiol 12:1187–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Deckert M, Engert A, Bruck W et al (2011) Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia 25:1797–1807

    Article  CAS  PubMed  Google Scholar 

  44. Rosenfeld SS, Hoffman JM, Coleman RE et al (1992) Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography. J Nucl Med 33:532–536

    CAS  PubMed  Google Scholar 

  45. Kim HO, Kim JS, Kim SO et al (2020) Clinicopathological characteristics of primary central nervous system lymphoma with low 18F-fludeoxyglucose uptake on brain positron emission tomography. Medicine (Baltimore) 99(20):e20140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Takashi Shibasaki in Yuai Memorial Hospital, and Hirotaka Shimada in Gunma University Hospital for cooperation in this study.

Funding

This study was partly supported by grants from the Ministry of Education, Science, Sports, and Culture.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: SO, MT, AT, TH. Acquisition of data: SO, TH, AT, TH. Analysis and interpretation of data: SO, MT, AT, TH. Drafting the article: SO, MT. Critically revising the article: YT, YY. Reviewed the submitted version of manuscript: all. Approved the final version of the manuscript on behalf of all authors: MT. Statistical analysis: SO. Study supervision: YT, YY.

Corresponding author

Correspondence to Masahiko Tosaka.

Ethics declarations

Conflict of interest

All of the authors declare no conflicts of interest pertaining to this work.

Ethical approval

This study was conducted under the institutional review board approval (Gunma University Hospital Clinical Research Review Board, Clinical Investigation and Research Unit, Gunma University Hospital, No. HS2020-083).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osawa, S., Tosaka, M., Horiguchi, K. et al. Usefulness of dual isotope 123I-IMP and 201Tl SPECT for the diagnosis of primary central nervous system lymphoma and glioblastoma. Int J Clin Oncol 27, 1264–1272 (2022). https://doi.org/10.1007/s10147-022-02171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-022-02171-3

Keywords

Navigation