Skip to main content

Advertisement

Log in

A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage

  • Clinical Study – Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Radiation therapy (RT) for brain tumors is associated with neurocognitive toxicity which may be a result of damage to neural progenitor cells (NPCs). We present a novel technique to limit the radiation dose to NPC without compromising tumor coverage. A study was performed in mice to examine the rationale and another was conducted in humans to determine its feasibility. C57BL/6 mice received localized radiation using a dedicated animal irradiation system with on-board CT imaging with either: (1) Radiation which spared NPC containing regions; (2) Radiation which did not spare these niches; or (3) Sham irradiation. Mice were sacrificed 24 h later and the brains were processed for immunohistochemical Ki-67 staining. For the human component of the study, 33 patients with primary brain tumors were evaluated. Two intensity modulated radiotherapy (IMRT) plans were retrospectively compared: a standard clinical plan and a plan which spares NPC regions while maintaining the same dose coverage of the tumor. The change in radiation dose to the contralateral NPC-containing regions was recorded. In the mouse model, non-NPC-sparing radiation treatment resulted in a significant decrease in the number of Ki67+ cells in dentate gyrus (DG) (P = 0.008) and subventricular zone (SVZ) (P = 0.005) compared to NPC-sparing radiation treatment. In NPC-sparing clinical plans, NPC regions received significantly lower radiation dose with no clinically relevant changes in tumor coverage. This novel radiation technique should significantly reduce radiation doses to NPC containing regions of the brain which may reduce neurocognitive deficits following RT for brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johannesen TB, Lien HH, Hole KH, Lote K (2003) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol 69(suppl. 2):169–176

    Article  PubMed  Google Scholar 

  2. Silber JH, Radcliffe J, Peckham V et al (1992) Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J Clin Oncol 10(suppl. 9):1390–1396

    PubMed  CAS  Google Scholar 

  3. Ris MD, Packer R, Goldwein J, Jones-Wallace D, Boyett JM (2001) Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a children’s cancer group study. J Clin Oncol 19(suppl. 15):3470–3476

    PubMed  CAS  Google Scholar 

  4. Hoppe-Hirsch E, Brunet L, Laroussinie F et al (1995) Intellectual outcome in children with malignant tumors of the posterior fossa: influence of the field of irradiation and quality of surgery. Childs Nerv Syst 11(suppl. 6):340–346

    Article  PubMed  CAS  Google Scholar 

  5. Schatz J, Kramer JH, Ablin A, Matthay KK (2000) Processing speed, working memory, and IQ: a developmental model of cognitive deficits following cranial radiation therapy. Neuropsychology 14(suppl. 2):189–200

    Article  PubMed  CAS  Google Scholar 

  6. Penitzka S, Steinvorth S, Sehlleier S, Fuß M, Wannenmacher M, Wenz F (2002) Assessment of cognitive functions after prophylactic and therapeutic whole brain irradiation using neuropsychological testing. Strahlenther Onkol 178(suppl. 5):252–258

    Article  PubMed  Google Scholar 

  7. Tada E, Parent JM, Lowenstein DH, Fike JR (2000) X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99(suppl. 1):33–41

    Article  PubMed  CAS  Google Scholar 

  8. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR (2003) Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 63(suppl. 14):4021–4027

    PubMed  CAS  Google Scholar 

  9. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(suppl. 5651):1760–1765

    Article  PubMed  CAS  Google Scholar 

  10. Madsen TM, Kristjansen PEG, Bolwig TG, Wörtwein G (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 119(suppl. 3):635–642

    Article  PubMed  CAS  Google Scholar 

  11. Rola R, Raber J, Rizk A et al (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188(suppl. 2):316–330

    Article  PubMed  CAS  Google Scholar 

  12. Saxe MD, Battaglia F, Wang J et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103(suppl. 46):17501–17506

    Article  PubMed  CAS  Google Scholar 

  13. Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S (2006) Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16(suppl. 3):296–304

    Article  PubMed  Google Scholar 

  14. Gage FH (2000) Mammalian neural stem cells. Science 287(suppl. 5457):1433–1438

    Article  PubMed  CAS  Google Scholar 

  15. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494(suppl. 3):415–434

    Article  PubMed  Google Scholar 

  16. Sanai N, Tramontin AD, Quinones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(suppl. 6976):740–744

    Article  PubMed  CAS  Google Scholar 

  17. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(suppl. 9):963–970

    Article  PubMed  CAS  Google Scholar 

  18. Goings GE, Sahni V, Szele FG (2004) Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res 996(suppl. 2):213–226

    Article  PubMed  CAS  Google Scholar 

  19. François S, Bensidhoum M, Mouiseddine M et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24(suppl. 4):1020–1029

    Article  PubMed  Google Scholar 

  20. Mouiseddine M, François S, Semont A et al (2007) Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol 80(suppl. SPEC. ISS. 1):S49–S55

    Article  PubMed  CAS  Google Scholar 

  21. Fike JR, Rola R, Limoli CL (2007) Radiation response of neural precursor cells. Neurosurg Clin N Am 18(suppl. 1):115–127

    Article  PubMed  Google Scholar 

  22. Panagiotakos G, Alshamy G, Chan B et al (2007) Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS ONE 2(suppl. 7):e588

  23. Hopewell JW, Cavanagh JB (1972) Effects of X irradiation on the mitotic activity of the subependymal plate of rats. Br J Radiol 45(suppl. 534):461–465

    Article  PubMed  CAS  Google Scholar 

  24. Iuvone L, Mariotti P, Colosimo C, Guzzetta F, Ruggiero A, Riccardi R (2002) Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer 95(suppl. 12):2562–2570

    Article  PubMed  Google Scholar 

  25. Lesnik PG, Ciesielski KT, Hart BL, Benzel EC, Sanders JA (1998) Evidence for cerebellar-frontal subsystem changes in children treated with intrathecal chemotherapy for leukemia: enhanced data analysis using an effect size model. Arch Neurol 55(suppl. 12):1561–1568

    Article  PubMed  CAS  Google Scholar 

  26. Waber DP, Tarbell NJ, Kahn CM, Gelber RD, Sallan SE (1992) The relationship of sex and treatment modality to neuropsychologic outcome in childhood acute lymphoblastic leukemia. J Clin Oncol 10(suppl. 5):810–817

    PubMed  CAS  Google Scholar 

  27. Bakke SJ, Fossen A, Storm-Mathiesen I, Lie SO (1993) Long-term cerebral effects of CNS chemotherapy in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 10(suppl. 3):267–270

    Article  PubMed  CAS  Google Scholar 

  28. Grossman SA, Reinhard CS, Loats HL (1989) The intracerebral penetration of intraventricularly administered methotrexate: a quantitative autoradiographic study. J Neurooncol 7(suppl. 4):319–328

    Article  PubMed  CAS  Google Scholar 

  29. Ghia A, Tomé WA, Thomas S et al (2007) Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys 68(suppl. 4):971–977

    Article  PubMed  Google Scholar 

  30. Gutiérrez AN, Westerly DC, Tomé WA et al (2007) Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 69(suppl. 2):589–597

    PubMed  Google Scholar 

  31. Barani IJ, Cuttino LW, Benedict SH et al (2007) Neural stem cell-preserving external-beam radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys 68(suppl. 4):978–985

    Article  PubMed  Google Scholar 

  32. Gondi V, Tollakanahalli R, Mehta M et al (2010) Hippocampal-sparing whole brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerated based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 78(4):1244–1252

    Article  PubMed  Google Scholar 

  33. Wong J, Armour E, Kazanzides P et al (2008) High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71(suppl. 5):1591–1599

    Article  PubMed  Google Scholar 

  34. Tryggestad E, Armour M, Iordachita I, Verhaegen F, Wong JW (2009) A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform. Phys Med Biol 54(suppl. 17):5341–5357

    Article  PubMed  CAS  Google Scholar 

  35. Rogers DWO, Faddegon BA, Ding GX, Ma C, We J, Mackie TR (1995) BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22(suppl. 5):503–524

    Article  PubMed  CAS  Google Scholar 

  36. Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115(suppl. 1):97–105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant support: Alfredo Quinones-Hinojosa, MD NIH/NINDS K08, HHMI, The Robert Wood Johnson Foundation/Harold Amos Medical Faculty Development Program, Maryland Stem Cell Technology Development Corporation (TEDCO), Children Cancer Foundation (CCF).

Conflicts of interest

Eric Ford, PhD and Erik Tryggestad, PhD are partially supported under a licensing agreement between the Johns Hopkins University and Gulmay Medical Ltd. for commercialization of the radiation devices discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Ford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redmond, K.J., Achanta, P., Grossman, S.A. et al. A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage. J Neurooncol 104, 579–587 (2011). https://doi.org/10.1007/s11060-011-0530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0530-8

Keywords

Navigation