Skip to main content

Advertisement

Log in

Wilms’ tumor 1 silencing decreases the viability and chemoresistance of glioblastoma cells in vitro: a potential role for IGF-1R de-repression

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Wilms’ tumor 1 (WT1) is a transcription factor with a multitude of downstream targets that have wide-ranging effects in non-glioma cell lines. Though its expression in glioblastomas is now well-documented, the role of WT1 in these tumors remains poorly defined. We hypothesized that WT1 functions as an oncogene to enhance glioblastoma viability and chemoresistance. WT1’s role was examined by studying the effect of WT1 silencing and overexpression on DNA damage, apoptosis and cell viability. Results indicated that WT1 silencing adversely affected glioblastoma viability, at times, in synergy with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and cisplatin. To investigate other mechanisms through which WT1 could affect viability, we measured cell cycle distribution, senescence, and autophagy. WT1 silencing had no effect on these processes. Lastly, we examined WT1 regulation of IGF-1R expression. Counterintuitively, upregulation of IGF-1R was evident after WT1 silencing. In conclusion, WT1 functions as a survival factor in glioblastomas, possibly through inhibition of IGF-1R expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Surawicz TS, McCarthy BJ, Kupelian V et al (1999) Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990–1994. Neuro Oncol 1:14–25

    PubMed  CAS  Google Scholar 

  2. Ballman KV, Buckner JC, Brown PD et al (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol 9(1):29–38

    Article  PubMed  CAS  Google Scholar 

  3. Surawicz TS, Davis F, Freels S et al (1998) Brain tumor survival: results from the national cancer data base. J Neurooncol 40:151–160

    Article  PubMed  CAS  Google Scholar 

  4. Loeb DM, Evron E, Patel CB et al (2001) Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 61:921–925

    PubMed  CAS  Google Scholar 

  5. Miwa H, Beran M, Saunders GF (1992) Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 6(5):405–409 Abstract

    PubMed  CAS  Google Scholar 

  6. Nakahara Y, Okamoto H, Mineta T et al (2004) Expression of the Wilms’ tumor gene product WT1 in glioblastomas and medulloblastomas. Brain Tumor Pathol 21:113–116

    Article  PubMed  CAS  Google Scholar 

  7. Oji Y, Suzuki T, Nakano Y et al (2004) Overexpression of the Wilms’ tumor gene WT1 in primary astrocytic tumors. Cancer Sci 95:822–827

    Article  PubMed  CAS  Google Scholar 

  8. Zhang L, Lau YK, Xia W et al (1999) Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res 5:343–353

    PubMed  CAS  Google Scholar 

  9. Clark AJ, Dos Santos WG, McCready J et al (2007) Wilms tumor 1 expression in malignant gliomas and correlation of +KTS isoforms with p53 status. J Neurosurg 107:586–592

    Article  PubMed  CAS  Google Scholar 

  10. Armstrong JF, Pritchard-Jones K, Bickmore WA et al (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40:85–97

    Article  PubMed  CAS  Google Scholar 

  11. Pritchard-Jones K, Fleming S, Davidson D et al (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197

    Article  PubMed  CAS  Google Scholar 

  12. Haber DA, Sohn RL, Buckler AJ et al (1991) Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA 88:9618–9622

    Article  PubMed  CAS  Google Scholar 

  13. Scharnhorst V, Dekker P, van der Eb AJ et al (1999) Internal translation initiation generates novel WT1 protein isoforms with distinct biological properties. J Biol Chem 274:23456–23462

    Article  PubMed  CAS  Google Scholar 

  14. Sharma PM, Bowman M, Madden SL et al (1994) RNA editing in the Wilms’ tumor susceptibility gene, WT1. Genes Dev 8:720–731

    Article  PubMed  CAS  Google Scholar 

  15. Call KM, Glaser T, Ito CY et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520

    Article  PubMed  CAS  Google Scholar 

  16. Keilholz U, Menssen HD, Gaiger A et al (2005) Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 19(8):1318–1323

    Article  PubMed  CAS  Google Scholar 

  17. Wagner KJ, Roberts SG (2004) Transcriptional regulation by the Wilms’ tumour suppressor protein WT1. Biochem Soc Trans 32:932–935

    Article  PubMed  CAS  Google Scholar 

  18. Davies RC, Calvio C, Bratt E et al (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 12:3217–3225

    Article  PubMed  CAS  Google Scholar 

  19. Caricasole A, Duarte A, Larsson SH et al (1996) RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci USA 93:7562–7566

    Article  PubMed  CAS  Google Scholar 

  20. Spraggon L, Dudnakova T, Slight J et al (2007) hnRNP-U directly interacts with WT1 and modulates WT1 transcriptional activation. Oncogene 26(10):1484–1491

    Article  PubMed  CAS  Google Scholar 

  21. Maheswaran S, Englert C, Bennett P et al (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 9:2143–2156

    Article  PubMed  CAS  Google Scholar 

  22. Johnstone RW, See RH, Sells SF et al (1996) A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol Cell Biol 16:6945–6956

    PubMed  CAS  Google Scholar 

  23. Scharnhorst V, Dekker P, van der Eb AJ et al (2000) Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions. J Biol Chem 275:10202–10211

    Article  PubMed  CAS  Google Scholar 

  24. Algar EM, Khromykh T, Smith SI et al (1996) A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene 12:1005–1014

    PubMed  CAS  Google Scholar 

  25. Oji Y, Nakamori S, Fujikawa M et al (2004) Overexpression of the Wilms’ tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci. 95:583–587

    Article  PubMed  CAS  Google Scholar 

  26. Tuna M, Chavez-Reyes A, Tari AM (2005) HER2/neu increases the expression of Wilms’ tumor 1 (WT1) protein to stimulate S-phase proliferation and inhibit apoptosis in breast cancer cells. Oncogene 24:1648–1652

    Article  PubMed  CAS  Google Scholar 

  27. Zapata-Benavides P, Tuna M, Lopez-Berestein G et al (2002) Downregulation of Wilms’ tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun 295:784–790

    Article  PubMed  CAS  Google Scholar 

  28. Oji Y, Ogawa H, Tamaki H et al (1999) Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 90:194–204

    PubMed  CAS  Google Scholar 

  29. Ware j, Roberts C, Richardson A, London C, Kroecher A, Amantana A, Devi G (2005) WT1: a novel target for antisense mediated prostate tumor therapy (Abstract #594). Poster presentation American Association of Cancer Research 2005, Anaheim CA, 16/04/2005

  30. Mayo MW, Wang CY, Drouin SS et al (1999) WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 18:3990–4003

    Article  PubMed  CAS  Google Scholar 

  31. Hewitt SM, Hamada S, McDonnell TJ et al (1995) Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res 55:5386–5389

    PubMed  CAS  Google Scholar 

  32. Heckman C, Mochon E, Arcinas M et al (1997) The WT1 protein is a negative regulator of the normal bcl-2 allele in t(14;18) lymphomas. J Biol Chem 272:19609–19614

    Article  PubMed  CAS  Google Scholar 

  33. Loeb DM (2006) WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle 5:1249–1253

    Article  PubMed  CAS  Google Scholar 

  34. Damon SE, Plymate SR, Carroll JM et al (2001) Transcriptional regulation of insulin-like growth factor-I receptor gene expression in prostate cancer cells. Endocrinology 142:21–27

    Article  PubMed  CAS  Google Scholar 

  35. Idelman G, Glaser T, Roberts CT Jr et al (2003) WT1–p53 interactions in insulin-like growth factor-I receptor gene regulation. J Biol Chem 278:3474–3482

    Article  PubMed  CAS  Google Scholar 

  36. Tajinda K, Carroll J, Roberts CT Jr (1999) Regulation of insulin-like growth factor I receptor promoter activity by wild-type and mutant versions of the WT1 tumor suppressor. Endocrinology 140:4713–4724

    Article  PubMed  CAS  Google Scholar 

  37. Chen Y, Douglass T, Jeffes EW et al (2002) Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a “paraptosis”-induced pathway that promotes systemic immunity against intracranial T9 gliomas. Blood 100:1373–1380

    Article  PubMed  CAS  Google Scholar 

  38. Jadus MR, Chen Y, Boldaji MT et al (2003) Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins. Cancer Gene Ther 10:411–420

    Article  PubMed  CAS  Google Scholar 

  39. Sperandio S, de BI, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381

    Article  PubMed  CAS  Google Scholar 

  40. Sperandio S, Poksay K, de BI et al (2004) Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 11:1066–1075

    Article  PubMed  CAS  Google Scholar 

  41. Liu Y, Lehar S, Corvi C et al (1998) Expression of the insulin-like growth factor I receptor C terminus as a myristylated protein leads to induction of apoptosis in tumor cells. Cancer Res 58:570–576

    PubMed  CAS  Google Scholar 

  42. Hata Y, Sandler A, Loehrer PJ et al (1994) Synergism of taxol and gallium nitrate in human breast carcinoma cells: schedule dependency. Oncol Res 6:19–24

    PubMed  CAS  Google Scholar 

  43. Mochan TA, Venere M, DiTullio RA Jr et al (2003) 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63:8586–8591

    PubMed  CAS  Google Scholar 

  44. Morrison AJ, Highland J, Krogan NJ et al (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775

    Article  PubMed  CAS  Google Scholar 

  45. Ito H, Daido S, Kanzawa T et al (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26:1401–1410

    PubMed  CAS  Google Scholar 

  46. Kanzawa T, Kondo Y, Ito H et al (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108

    PubMed  CAS  Google Scholar 

  47. Chi S, Kitanaka C, Noguchi K et al (1999) Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18:2281–2290

    Article  PubMed  CAS  Google Scholar 

  48. Kanzawa T, Germano IM, Komata T et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457

    Article  PubMed  CAS  Google Scholar 

  49. Ito H, Aoki H, Kuhnel F et al (2006) Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98:625–636

    Article  PubMed  CAS  Google Scholar 

  50. Katayama M, Kawaguchi T, Berger MS et al (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558

    Article  PubMed  CAS  Google Scholar 

  51. Abedin MJ, Wang D, McDonnell MA et al (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510

    Article  PubMed  CAS  Google Scholar 

  52. Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  PubMed  CAS  Google Scholar 

  53. Izumoto S, Tsuboi A, Oka Y et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971

    Article  PubMed  CAS  Google Scholar 

  54. Englert C, Hou X, Maheswaran S et al (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675

    PubMed  CAS  Google Scholar 

  55. Han Y, San Marina S, Liu J et al (2004) Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene 23:6933–6941

    Article  PubMed  CAS  Google Scholar 

  56. Liu XW, Gong LJ, Guo LY et al (2001) The Wilms’ tumor gene product WT1 mediates the down-regulation of the rat epidermal growth factor receptor by nerve growth factor in PC12 cells. J Biol Chem 276:5068–5073

    Article  PubMed  CAS  Google Scholar 

  57. Drummond IA, Madden SL, Rohwer-Nutter P et al (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257:674–678

    Article  PubMed  CAS  Google Scholar 

  58. Gashler AL, Bonthron DT, Madden SL et al (1992) Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms tumor suppressor WT1. Proc Natl Acad Sci USA 89:10984–10988

    Article  PubMed  CAS  Google Scholar 

  59. Nichols KE, Re GG, Yan YX et al (1995) WT1 induces expression of insulin-like growth factor 2 in Wilms’ tumor cells. Cancer Res 55:4540–4543

    PubMed  CAS  Google Scholar 

  60. Broaddus WC, Liu Y, Steele LL et al (1999) Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 91:997–1004

    Article  PubMed  CAS  Google Scholar 

  61. Ishii N, Maier D, Merlo A et al (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479

    Article  PubMed  CAS  Google Scholar 

  62. Shahrabani-Gargir L, Pandita TK, Werner H (2004) Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 145:5679–5687

    Article  PubMed  CAS  Google Scholar 

  63. Morrison DJ, English MA, Licht JD (2005) WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bcl-2 family member Bak. Cancer Res 65:8174–8182

    Article  PubMed  CAS  Google Scholar 

  64. Rodeck U, Bossler A, Kari C et al (1994) Expression of the wt1 Wilms’ tumor gene by normal and malignant human melanocytes. Int J Cancer 59:78–82

    Article  PubMed  CAS  Google Scholar 

  65. Wang W, Lee SB, Palmer R et al (2001) A functional interaction with CBP contributes to transcriptional activation by the Wilms tumor suppressor WT1. J Biol Chem 276:16810–16816

    Article  PubMed  CAS  Google Scholar 

  66. Simpson LA, Burwell EA, Thompson KA et al (2006) The antiapoptotic gene A1/BFL1 is a WT1 target gene that mediates granulocytic differentiation and resistance to chemotherapy. Blood 107:4695–4702

    Article  PubMed  CAS  Google Scholar 

  67. Ito K, Oji Y, Tatsumi N et al (2006) Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 25:4217–4229

    Article  PubMed  CAS  Google Scholar 

  68. Daido S, Kanzawa T, Yamamoto A et al (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293

    Article  PubMed  CAS  Google Scholar 

  69. Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346

    PubMed  CAS  Google Scholar 

  70. Loeb DM, Korz D, Katsnelson M et al (2002) Cyclin E is a target of WT1 transcriptional repression. J Biol Chem 277:19627–19632

    Article  PubMed  CAS  Google Scholar 

  71. Englert C, Maheswaran S, Garvin AJ et al (1997) Induction of p21 by the Wilms’ tumor suppressor gene WT1. Cancer Res 57:1429–1434

    PubMed  CAS  Google Scholar 

  72. Werner H, Roberts CT Jr, Rauscher FJ III et al (1996) Regulation of insulin-like growth factor I receptor gene expression by the Wilms’ tumor suppressor WT1. J Mol Neurosci 7:111–123

    Article  PubMed  CAS  Google Scholar 

  73. Hongo A, Yumet G, Resnicoff M et al (1998) Inhibition of tumorigenesis and induction of apoptosis in human tumor cells by the stable expression of a myristylated COOH terminus of the insulin-like growth factor I receptor. Cancer Res 58:2477–2484

    PubMed  CAS  Google Scholar 

  74. Plymate SR, Bae VL, Maddison L et al (1997) Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology 138:1728–1735

    Article  PubMed  CAS  Google Scholar 

  75. Plymate SS, Bae VL, Maddison L et al (1997) Type-1 insulin-like growth factor receptor reexpression in the malignant phenotype of SV40-T-immortalized human prostate epithelial cells enhances apoptosis. Endocrine. 7:119–124

    Article  PubMed  CAS  Google Scholar 

  76. Van Meter et al (2004) AKT inhibition enhances BCNU-mediated death in astrocytoma cells independent of PTEN functional status. Poster presentation. Congress of neurological surgeons, Annual meeting and 6th biennial AANS/CNS joint tumor satellite symposium, San Francisco CA, 21/10/2004

  77. Simpson JR, Horton J, Scott C et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26:239–244

    Article  PubMed  CAS  Google Scholar 

  78. Walker MD, Alexander E Jr, Hunt WE et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49:333–343

    Article  PubMed  CAS  Google Scholar 

  79. Mains RE, May V (1988) The role of a low pH intracellular compartment in the processing, storage, and secretion of ACTH and endorphin. J Biol Chem 263:7887–7894

    PubMed  CAS  Google Scholar 

  80. Paglin S, Hollister T, Delohery T et al (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We were granted invaluable assistance on this project from a number of people, for which we are deeply appreciative. Specifically, we would like to thank Dr. Lynne Elmore for her advice on immunoblotting and immunofluorescence of H2AX and 53BP1. We are also indebted to Frances White and Julie Farnsworth at the VCU Flow Cytometry Core Facility, supported in part by NIH Grant P30 CA16058, for their many hours that they committed to this project. Further, the help of Dr. Scott Henderson was critical to the epifluorescent and confocal microscopy that were both performed at the VCU Department of Neurobiology & Anatomy Microscopy Facility, supported, in part, with funding from NIH-NINDS Center core grant 5P30NS047463. This work was also supported by the F. Norton Hord, Jr. fund of the Medical College of Virginia Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Broaddus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.Y., Clark, A.J., Chan, D.C. et al. Wilms’ tumor 1 silencing decreases the viability and chemoresistance of glioblastoma cells in vitro: a potential role for IGF-1R de-repression. J Neurooncol 103, 87–102 (2011). https://doi.org/10.1007/s11060-010-0374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0374-7

Keywords

Navigation