Skip to main content

Advertisement

Log in

Effects of irradiation on tumor cell survival, invasion and angiogenesis

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Ionizing irradiation is a widely applied therapeutic method for the majority of solid malignant neoplasms, including brain tumors where, depending on localization, this might often be the only feasible primary intervention.Without doubt, it has been proved to be a fundamental tool available in the battlefield against cancer, offering a clear survival benefit in most cases. However, numerous studies have associated tumor irradiation with enhanced aggressive phenotype of the remaining cancer cells. A cell population manages to survive after the exposure, either because it receives sublethal doses and/or because it successfully utilizes the repair mechanisms. The biology of irradiated cells is altered leading to up-regulation of genes that favor cell survival, invasion and angiogenesis. In addition, hypoxia within the tumor mass limits the cytotoxicity of irradiation, whereas irradiation itself may worsen hypoxic conditions, which also contribute to the generation of resistant cells. Activation of cell surface receptors, such as the epidermal growth factor receptor, utilization of signaling pathways, and over-expression of cytokines, proteases and growth factors, for example the matrix metalloproteinases and vascular endothelial growth factor, protect tumor and non-tumor cells from apoptosis, increase their ability to invade to adjacent or distant areas, and trigger angiogenesis. This review will try to unfold the various molecular events and interactions that control tumor cell survival, invasion and angiogenesis and which are elicited or influenced by irradiation of the tumor mass, and to emphasize the importance of combining irradiation therapy with molecular targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Owen JB, Coia LR, Hanks GE (1992) Recent patterns of growth in radiation therapy facilities in the United States: a patterns of care study report. Int J Radiat Oncol Biol Phys 24(5):983–986

    CAS  PubMed  Google Scholar 

  2. Prise KM, Schettino G, Folkard M, Held KD (2005) New insights on cell death from radiation exposure. Lancet Oncol 6(7):520–528

    Article  CAS  PubMed  Google Scholar 

  3. Goldman M (1982) Ionizing radiation and its risks. West J Med 137(6):540–547

    CAS  PubMed  Google Scholar 

  4. Levin VA, Maor MH, Thall PF, Yung WK, Bruner J, Sawaya R, Kyritsis AP, Leeds N, Woo S, Rodriguez L et al (1995) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by vincristine chemotherapy for the treatment of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 33(2):357–364

    CAS  PubMed  Google Scholar 

  5. Levin VA, Yung WK, Bruner J, Kyritsis A, Leeds N, Gleason MJ, Hess KR, Meyers CA, Ictech SA, Chang E, Maor MH (2002) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys 53(1):58–66

    CAS  PubMed  Google Scholar 

  6. Thornton AF Jr, Sandler HM, Ten Haken RK, McShan DL, Fraass BA, La Vigne ML, Yanke BR (1992) The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 24(4):767–775

    PubMed  Google Scholar 

  7. Levin VA, Giglio P, Kyritsis AP (1995) The management of gliomas, medulloblastoma, CNS germ cell tumors, and carcinomas metastatic to the CNS. In: Cavalli F, Hansen H, Kaye S (eds) Textbook of medical oncology. Martin Dunitz, London, pp 415–430

    Google Scholar 

  8. Loeffler J, Alexander EI, Shea WM, Wen PY, Fine HA, Kooy HM, Black PM (1992) Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10:1379–1385

    CAS  PubMed  Google Scholar 

  9. Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB (2002) Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 277(18):15400–15406

    Article  CAS  PubMed  Google Scholar 

  10. Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5):351–360

    Article  CAS  PubMed  Google Scholar 

  11. Bozec A, Formento P, Ciccolini J et al (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4(12):1962–1971

    Article  CAS  PubMed  Google Scholar 

  12. Sonveaux P, Brouet A, Havaux X et al (2003) Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res 63(5):1012–1019

    CAS  PubMed  Google Scholar 

  13. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750

    CAS  PubMed  Google Scholar 

  14. Von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metastasis 9(2):77–104

    Article  Google Scholar 

  15. Abdollahi A, Lipson KE, Han X et al (2003) SU5416 and SU668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63(13):3755–3763

    CAS  PubMed  Google Scholar 

  16. Hovinga KE, Stalpers LJ, van Bree C et al (2005) Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—a clue to radioresistance? J Neurooncol 74(2):99–103

    Article  CAS  PubMed  Google Scholar 

  17. Sheng-Hua C, Yan-Bin M, Zhi-An Z et al (2007) Radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines. Surg Neurol 68(6):610–613

    Article  PubMed  Google Scholar 

  18. Dent P, Reardon DB, Park JS et al (1999) Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell 10(8):2493–2506

    CAS  PubMed  Google Scholar 

  19. Yacoub A, Miller A, Caron RW (2006) Radiotherapy-induced signal transduction. Endocr Relat Cancer 13(Suppl 1):S99–114

    Article  CAS  PubMed  Google Scholar 

  20. Cosaceanu D, Budgie RA, Lewensohn R, Dricu A (2007) Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 26(17):2423–2434

    Article  CAS  PubMed  Google Scholar 

  21. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S (2003) MAPK pathways in radiation responses. Oncogene 22(37):5885–5896

    Article  CAS  PubMed  Google Scholar 

  22. Kargiotis O, Chetty C, Gondi CS et al (2008) Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 27(35):4830–4840

    Article  CAS  PubMed  Google Scholar 

  23. Cheng JC, Chou CH, Kuo ML, Hsieh CY (2006) Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 25(53):7009–7018

    Article  CAS  PubMed  Google Scholar 

  24. Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66(17):8511–8519

    Article  CAS  PubMed  Google Scholar 

  25. Kargiotis O, Chetty C, Gogineni V et al (2008) uPA/uPAR downregulation inhibits radiation-induced migration, invasion and angiogenesis in IOMM-Lee meningioma cells and decreases tumor growth in vivo. Int J Oncol 33(5):937–947

    CAS  PubMed  Google Scholar 

  26. Cao Q, Cai W, Li T et al (2006) Combination of integrin siRNA and irradiation for breast cancer therapy. Biochem Biophys Res Commun 351(3):726–732

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki MS (2009) Advances in the biophysical and molecular bases of radiation cytogenetics. Int J Radiat Biol 85(1):26–47

    Article  CAS  PubMed  Google Scholar 

  28. Iliakis G, Wang H, Perrault AR et al (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104(1–4):14–20

    Article  CAS  PubMed  Google Scholar 

  29. Löbrich M, Rydberg B, Cooper PK (1995) Repair of X-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proc Natl Acad Sci USA 92(26):12050–12054

    Article  PubMed  Google Scholar 

  30. Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ (2004) Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 24(20):9207–9220

    Article  CAS  PubMed  Google Scholar 

  31. Xue L, Yu D, Furusawa Y et al (2009) Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation. Mutat Res 670(1–2):15–23

    CAS  PubMed  Google Scholar 

  32. Choudhury A, Cuddihy A, Bristow RG (2006) Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol 16(1):51–58

    Article  PubMed  Google Scholar 

  33. Ivanov VN, Zhou H, Partridge MA, Hei TK (2009) Inhibition of ataxia telangiectasia mutated kinase activity enhances TRAIL-mediated apoptosis in human melanoma cells. Cancer Res 69(8):3510–3519

    Article  CAS  PubMed  Google Scholar 

  34. Harney J, Short SC, Shah N, Joiner M, Saunders MI (2004) Low dose hyper-radiosensitivity in metastatic tumors. Int J Radiat Oncol Biol Phys 59(4):1190–1195

    Article  PubMed  Google Scholar 

  35. Enns L, Bogen KT, Wizniak J, Murtha AD, Weinfeld M (2004) Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis. Mol Cancer Res 2(10):557–566

    CAS  PubMed  Google Scholar 

  36. Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52(22):6394–6396

    CAS  PubMed  Google Scholar 

  37. Ojima M, Ban N, Kai M (2008) DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat Res 170(3):365–371

    Article  CAS  PubMed  Google Scholar 

  38. Nagasawa H, Cremesti A, Kolesnick R, Fuks Z, Little JB (2002) Involvement of membrane signaling in the bystander effect in irradiated cells. Cancer Res 62(9):2531–2534

    CAS  PubMed  Google Scholar 

  39. Lehnert BE, Goodwin EH, Deshpande A (1997) Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res 57(11):2164–2171

    CAS  PubMed  Google Scholar 

  40. Narayanan PK, Goodwin EH, Lehnert BE (1997) Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57(18):3963–3971

    CAS  PubMed  Google Scholar 

  41. Wu LJ, Randers-Pehrson G, Xu A et al (1999) Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA 96(9):4959–4964

    Article  CAS  PubMed  Google Scholar 

  42. Matsumoto H, Hayashi S, Hatashita M et al (2001) Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 155(3):387–396

    Article  CAS  PubMed  Google Scholar 

  43. Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB (2002) Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 277(18):15400–15406

    Article  CAS  PubMed  Google Scholar 

  44. Kamochi N, Nakashima M, Aoki S et al (2008) Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction. Cancer Sci 99(12):2417–2427

    Article  CAS  PubMed  Google Scholar 

  45. Yacoub A, Park JS, Qiao L, Dent P, Hagan MP (2001) MAPK dependence of DNA damage repair: ionizing radiation and the induction of expression of the DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells in a MEK1/2 dependent fashion. Int J Radiat Biol 77(10):1067–1078

    Article  CAS  PubMed  Google Scholar 

  46. Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K (2007) Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67(3):1046–1053

    Article  CAS  PubMed  Google Scholar 

  47. Grant S, Qiao L, Dent P (2002) Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front Biosci 7:d376–d389

    Article  CAS  PubMed  Google Scholar 

  48. Warenius HM, Jones MD, Thompson CC (1996) Exit from G2 phase after 2 Gy gamma irradiation is faster in radiosensitive human cells with high expression of the RAF1 proto-oncogene. Radiat Res 146(5):485–493

    Article  CAS  PubMed  Google Scholar 

  49. Carapancea M, Cosaceanu D, Budiu R et al (2007) Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. J Neurooncol 85(3):245–254

    Article  CAS  PubMed  Google Scholar 

  50. Bulgin D, Podtcheko A, Takakura S et al (2006) Selective pharmacologic inhibition of c-Jun NH2-terminal kinase radiosensitizes thyroid anaplastic cancer cell lines via induction of terminal growth arrest. Thyroid 16(3):217–224

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, McGowan CH, Zhao M et al (2000) Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol 20(13):4543–4552

    Article  CAS  PubMed  Google Scholar 

  52. Schuurbiers OC, Kaanders JH, van der Heijden HF, Dekhuijzen RP, Oyen WJ, Bussink J (2009) The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J Thorac Oncol 4(6):761–767

    Article  PubMed  Google Scholar 

  53. Leverrier Y, Thomas J, Mathieu AL, Low W, Blanquier B, Marvel J (1999) Role of PI3-kinase in Bcl-X induction and apoptosis inhibition mediated by IL-3 or IGF-1 in Baf-3 cells. Cell Death Differ 6(3):290–296

    Article  CAS  PubMed  Google Scholar 

  54. Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 264(2):550–555

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Tennekoon GI, Birnbaum M, Marchionni MA, Rutkowski JL (2001) Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 17(4):761–767

    Article  PubMed  CAS  Google Scholar 

  56. Gupta AK, Bakanauskas VJ, Cerniglia GJ et al (2001) The Ras radiation resistance pathway. Cancer Res 61(10):4278–4282

    CAS  PubMed  Google Scholar 

  57. Choi JA, Park MT, Kang CM et al (2004) Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling pathways. Oncogene 23(1):9–20

    Article  CAS  PubMed  Google Scholar 

  58. Rodemann HP, Dittmann K, Toulany M (2007) Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 83(11–12):781–791

    Article  CAS  PubMed  Google Scholar 

  59. Toulany M, Kasten-Pisula U, Brammer I et al (2006) Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 12(13):4119–4126

    Article  CAS  PubMed  Google Scholar 

  60. Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62(1):200–207

    CAS  PubMed  Google Scholar 

  61. Valerie K, Yacoub A, Hagan MP et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6(3):789–801

    Article  CAS  PubMed  Google Scholar 

  62. Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76(5):589–605

    Article  CAS  PubMed  Google Scholar 

  63. Guerra LE, Smith RM, Kaminski A, Lagios MD, Silverstein MJ (2008) Invasive local recurrence increased after radiation therapy for ductal carcinoma in situ. Am J Surg 196(4):552–555

    Article  PubMed  Google Scholar 

  64. Chung YL, Jian JJ, Cheng SH et al (2006) Sublethal irradiation induces vascular endothelial growth factor and promotes growth of hepatoma cells: implications for radiotherapy of hepatocellular carcinoma. Clin Cancer Res 12(9):2706–2715

    Article  CAS  PubMed  Google Scholar 

  65. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211

    CAS  PubMed  Google Scholar 

  66. Rofstad EK, Mathiesen B, Galappathi K (2004) Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 64(1):13–18

    Article  CAS  PubMed  Google Scholar 

  67. Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F (2007) Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecol Oncol 107(3):500–504

    Article  PubMed  Google Scholar 

  68. Andarawewa KL, Erickson AC, Chou WS et al (2007) Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 67(18):8662–8670

    Article  CAS  PubMed  Google Scholar 

  69. Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO (2007) Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 43(7):1214–1224

    Article  CAS  PubMed  Google Scholar 

  70. Hwang SY, Jung JW, Jeong JS et al (2006) Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells. Int J Cancer 118(8):2056–2063

    Article  CAS  PubMed  Google Scholar 

  71. Baluna RG, Eng TY, Thomas CR (2006) Adhesion molecules in radiotherapy. Radiat Res 166(6):819–831

    Article  CAS  PubMed  Google Scholar 

  72. Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65(5):1536–1543

    CAS  PubMed  Google Scholar 

  73. Monferran S, Skuli N, Delmas C et al (2008) Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. Int J Cancer 123(2):357–364

    Article  CAS  PubMed  Google Scholar 

  74. Monnier Y, Farmer P, Bieler G et al (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68(18):7323–7331

    Article  CAS  PubMed  Google Scholar 

  75. Lakka SS, Gondi CS, Rao JS (2005) Proteases and glioma angiogenesis. Brain Pathol 15(4):327–341

    Article  CAS  PubMed  Google Scholar 

  76. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501

    Article  CAS  PubMed  Google Scholar 

  77. Qian LW, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8(4):1223–1227

    CAS  PubMed  Google Scholar 

  78. Trog D, Yeghiazaryan K, Fountoulakis M et al (2006) Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. Eur J Pharmacol 542(1–3):8–15

    Article  CAS  PubMed  Google Scholar 

  79. Speake WJ, Dean RA, Kumar A, Morris TM, Scholefield JH, Watson SA (2005) Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. Eur J Surg Oncol 3(8):869–874

    Article  Google Scholar 

  80. Cordes N, Hansmeier B, Beinke C, Meineke V, van Beuningen D (2003) Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines. Br J Cancer 89(11):2122–2132

    Article  CAS  PubMed  Google Scholar 

  81. Chetty C, Bhoopathi P, Rao JS, Lakka SS (2009) Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer 124(10):2468–2477

    Article  CAS  PubMed  Google Scholar 

  82. Paquette B, Baptiste C, Therriault H, Arguin G, Plouffe B, Lemay R (2007) In vitro irradiation of basement membrane enhances the invasiveness of breast cancer cells. Br J Cancer 97(11):1505–1512

    Article  CAS  PubMed  Google Scholar 

  83. Wei LH, Lai KP, Chen CA et al (2005) Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene 24(3):390–398

    Article  CAS  PubMed  Google Scholar 

  84. Gogineni VR, Kargiotis O, Klopfenstein JD, Gujrati M, Dinh DH, Rao JS (2009) RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. Int J Oncol 34(1):209–218

    CAS  PubMed  Google Scholar 

  85. Jadhav U, Mohanam S (2006) Response of neuroblastoma cells to ionizing radiation: modulation of in vitro invasiveness and angiogenesis of human microvascular endothelial cells. Int J Oncol 29(6):1525–1531

    CAS  PubMed  Google Scholar 

  86. Zhai GG, Malhotra R, Delaney M et al (2006) Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol 76(3):227–237

    Article  CAS  PubMed  Google Scholar 

  87. Wick W, Wick A, Schulz JB, Dichgans J, Rodemann HP, Weller M (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62(6):1915–1919

    CAS  PubMed  Google Scholar 

  88. Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64(9):3215–3222

    Article  CAS  PubMed  Google Scholar 

  89. Rofstad EK, Mathiesen B, Henriksen K, Kindem K, Galappathi K (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65(6):2387–2396

    Article  CAS  PubMed  Google Scholar 

  90. Koch CJ, Kruuv J, Frey HE (1973) Variation in radiation response of mammalian cells as a function of oxygen tension. Radiat Res 53(1):33–42

    Article  CAS  PubMed  Google Scholar 

  91. Chapman JD, Dugle DL, Reuvers AP, Meeker BE, Borsa J (1974) Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med 26(4):383–389

    Article  CAS  PubMed  Google Scholar 

  92. Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9(6):1957–1971

    CAS  PubMed  Google Scholar 

  93. Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6(1):46–58

    Article  PubMed  Google Scholar 

  94. Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378

    CAS  PubMed  Google Scholar 

  95. Chandel NS, McClintock DS, Feliciano CE et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138

    Article  CAS  PubMed  Google Scholar 

  96. Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78(3):281–293

    Article  CAS  PubMed  Google Scholar 

  97. Harada H, Kizaka-Kondoh S, Li G et al (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26(54):7508–7516

    Article  CAS  PubMed  Google Scholar 

  98. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Article  CAS  PubMed  Google Scholar 

  99. Singh-Gupta V, Zhang H, Banerjee S et al (2009) Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer 124(7):1675–1684

    Article  CAS  PubMed  Google Scholar 

  100. Kim WY, Oh SH, Woo JK, Hong WK, Lee HY (2009) Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res 69(4):1624–1632

    Article  CAS  PubMed  Google Scholar 

  101. Skuli N, Monferran S, Delmas C et al (2009) Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 69(8):3308–3316

    Article  CAS  PubMed  Google Scholar 

  102. Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4(11):1717–1728

    Article  CAS  PubMed  Google Scholar 

  103. Parthymou A, Kardamakis D, Pavlopoulos I, Papadimitriou E (2004) Irradiated C6 glioma cells induce angiogenesis in vivo and activate endothelial cells in vitro. Int J Cancer 110(6):807–814

    Article  CAS  PubMed  Google Scholar 

  104. Solberg TD, Nearman J, Mullins J, Li S, Baranowska-Kortylewicz J (2008) Correlation between tumor growth delay and expression of cancer and host VEGF, VEGFR2, and osteopontin in response to radiotherapy. Int J Radiat Oncol Biol Phys 72(3):918–926

    CAS  PubMed  Google Scholar 

  105. Nojiri K, Iwakawa M, Ichikawa Y et al (2009) The proangiogenic factor ephrin-A1 is up-regulated in radioresistant murine tumor by irradiation. Exp Biol Med 234(1):112–122

    Article  CAS  Google Scholar 

  106. Tabatabai G, Frank B, Wick A et al (2007) Synergistic antiglioma activity of radiotherapy and enzastaurin. Ann Neurol 61(2):153–161

    Article  CAS  PubMed  Google Scholar 

  107. Kumar P, Benedict R, Urzua F, Fischbach C, Mooney D, Polverini P (2005) Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Invest 85(6):756–767

    Article  CAS  PubMed  Google Scholar 

  108. Abdollahi A, Griggs DW, Zieher H et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11(17):6270–6279

    Article  CAS  PubMed  Google Scholar 

  109. Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 40(1):46–54

    Article  PubMed  Google Scholar 

  110. Sonveaux P, Dessy C, Brouet A et al (2002) Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J 16(14):1979–1981

    CAS  PubMed  Google Scholar 

  111. Annabi B, Lee YT, Martel C, Pilorget A, Bahary JP, Béliveau R (2003) Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biol Ther 2(6):642–649

    CAS  PubMed  Google Scholar 

  112. Bozec A, Formento P, Ciccolini J et al (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4(12):1962–1971

    Article  CAS  PubMed  Google Scholar 

  113. Choy H, Milas L (2003) Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 95(19):1440–1452

    CAS  PubMed  Google Scholar 

  114. Ahmad M, Khurana NR, Jaberi JE (2007) Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc Res 73(1):14–19

    Article  CAS  PubMed  Google Scholar 

  115. Mao XW (2006) A quantitative study of the effects of ionizing radiation on endothelial cells and capillary-like network formation. Technol Cancer Res Treat 5(2):127–134

    CAS  PubMed  Google Scholar 

  116. Svagzdys S, Lesauskaite V, Pavalkis D, Nedzelskiene I, Pranys D, Tamelis A (2009) Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer 9:95

    Article  PubMed  CAS  Google Scholar 

  117. Tsai JH, Makonnen S, Feldman M, Sehgal CM, Maity A, Lee WM (2005) Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther 4(12):1395–1400

    Article  CAS  Google Scholar 

  118. Scharpfenecker M, Kruse JJ, Sprong D, Russell NS, Ten Dijke P, Stewart FA (2009) Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. Int J Radiat Oncol Biol Phys 73(2):506–513

    CAS  PubMed  Google Scholar 

  119. Senan S, Smit EF (2007) Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist 12(4):465–477

    Article  CAS  PubMed  Google Scholar 

  120. Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14(7):2210–2219

    Article  CAS  PubMed  Google Scholar 

  121. Shibuya K, Komaki R, Shintani T et al (2007) Targeted therapy against VEGFR and EGFR with ZD6474 enhances the therapeutic efficacy of irradiation in an orthotopic model of human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 69(5):1534–1543

    CAS  PubMed  Google Scholar 

  122. Lee CG, Heijn M, di Tomaso E et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19):5565–5570

    CAS  PubMed  Google Scholar 

  123. Shannon AM, Williams KJ (2008) Antiangiogenics and radiotherapy. J Pharm Pharmacol 60(8):1029–1036

    Article  CAS  PubMed  Google Scholar 

  124. Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563

    CAS  PubMed  Google Scholar 

  125. Itasaka S, Komaki R, Herbst RS et al (2007) Endostatin improves radioresponse and blocks tumor revascularization after radiation therapy for A431 xenografts in mice. Int J Radiat Oncol Biol Phys 67(3):870–878

    CAS  PubMed  Google Scholar 

  126. Viani GA, Manta GB, Fonseca EC, De Fendi LI, Afonso SL, Stefano EJ (2009) Whole brain radiotherapy with radiosensitizer for brain metastases. J Exp Clin Cancer Res 28:1

    Article  PubMed  Google Scholar 

  127. Spiotto MT, Fu YX, Schreiber H (2003) Tumor immunity meets autoimmunity: antigen levels and dendritic cell maturation. Curr Opin Immunol 15(6):725–730

    Article  CAS  PubMed  Google Scholar 

  128. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  CAS  PubMed  Google Scholar 

  129. Kim KW, Kim SH, Shin JG et al (2004) Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 109(5):685–690

    Article  CAS  PubMed  Google Scholar 

  130. Ishihara H, Tsuneoka K, Dimchev AB et al (1993) Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation. Radiat Res 133(3):321–326

    Article  CAS  PubMed  Google Scholar 

  131. Rieser C, Bock G, Klocker H et al (1997) Prostaglandin E2 and tumor necrosis factor alpha cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production. J Exp Med 186(9):1603–1608

    Article  CAS  PubMed  Google Scholar 

  132. Demaria S, Bhardwaj N, McBride WH, Formenti SC (2005) Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3):655–666

    PubMed  Google Scholar 

  133. Senzer N, Mani S, Rosemurgy A et al (2004) TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol 22(4):592–601

    Article  CAS  PubMed  Google Scholar 

  134. Gulley JL, Arlen PM, Bastian N et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(90):3353–3362

    Article  CAS  PubMed  Google Scholar 

  135. De Schutter H, Nuyts S (2009) Radiosensitizing potential of epigenetic anticancer drugs. Anticancer Agents Med Chem 9(1):99–108

    PubMed  Google Scholar 

  136. Camphausen K, Tofilon PJ (2007) Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 25(26):4051–4056

    Article  CAS  PubMed  Google Scholar 

  137. Harrington KJ, Melcher A, Vassaux G, Pandha HS, Vile RG (2008) Exploiting synergies between radiation and oncolytic viruses. Curr Opin Mol Ther 10(4):362–370

    PubMed  Google Scholar 

  138. Advani SJ, Weichselbaum RR, Chmura SJ (2007) Enhancing radiotherapy with genetically engineered viruses. J Clin Oncol 25(26):4090–4095

    Article  CAS  PubMed  Google Scholar 

  139. Robson T, Worthington J, McKeown SR, Hirst DG (2005) Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity. Technol Cancer Res Treat 4(4):343–361

    CAS  PubMed  Google Scholar 

  140. Belka C, Jendrossek V, Pruschy M, Vink S, Verheij M, Budach W (2004) Apoptosis-modulating agents in combination with radiotherapy—current status and outlook. Int J Radiat Oncol Biol Phys 58(2):542–554

    CAS  PubMed  Google Scholar 

  141. Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404

    Article  CAS  PubMed  Google Scholar 

  142. Willett CG, Duda DG, di Tomaso E et al (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026

    Article  CAS  PubMed  Google Scholar 

  143. Zhao JD, Liu J, Ren ZG et al (2010) Maintenance of sorafenib following combined therapy of three-dimensional conformal radiation therapy/intensity-modulated radiation therapy and transcatheter arterial chemoembolization in patients with locally advanced hepatocellular carcinoma: a phase I/II study. Radiat Oncol 5(1):12

    Article  PubMed  CAS  Google Scholar 

  144. Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odysseas Kargiotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargiotis, O., Geka, A., Rao, J.S. et al. Effects of irradiation on tumor cell survival, invasion and angiogenesis. J Neurooncol 100, 323–338 (2010). https://doi.org/10.1007/s11060-010-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0199-4

Keywords

Navigation