Skip to main content

Advertisement

Log in

Genetically engineered T cells to target EGFRvIII expressing glioblastoma

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-ζ). After in vitro selection and expansion, MR1-ζ genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-γ secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-ζ) or signaling (MR1-delζ). MR1-ζ expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman EP et al (2007) Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 25(16):2288–2294. doi:10.1200/JCO.2006.08.0705

    Article  PubMed  CAS  Google Scholar 

  2. Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH et al (2003) Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 9(11):4247–4254

    PubMed  CAS  Google Scholar 

  3. Ochiai H, Archer GE, Herndon JEII, Kuan CT, Mitchell DA, Bigner DD et al (2008) EGFRvIII-targeted immunotoxin induces antitumor immunity that is inhibited in the absence of CD4+ and CD8 + T cells. Cancer Immunol Immunother 57(1):115–121. doi:10.1007/s00262-007-0363-7

    Article  PubMed  CAS  Google Scholar 

  4. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129. doi:10.1126/science.1129003

    Article  PubMed  CAS  Google Scholar 

  5. Sadelain M, Riviere I, Brentjens R (2003) Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 3(1):35–45. doi:10.1038/nrc971

    Article  PubMed  CAS  Google Scholar 

  6. Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11(23):8304–8311. doi:10.1158/1078-0432.CCR-04-2588

    Article  PubMed  CAS  Google Scholar 

  7. Becker ML, Near R, Mudgett-Hunter M, Margolies MN, Kubo RT, Kaye J et al (1989) Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell 58(5):911–921. doi:10.1016/0092-8674(89)90943-4

    Article  PubMed  CAS  Google Scholar 

  8. Kawasaki H, Becker ML, Hedrick SM (1991) Specificity for molecules of the major histocompatibility complex mediated by a hybrid immunoglobulin-T cell receptor. New Biol 3(5):487–497

    PubMed  CAS  Google Scholar 

  9. Roberts MR, Qin L, Zhang D, Smith DH, Tran AC, Dull TJ et al (1994) Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 84(9):2878–2889

    PubMed  CAS  Google Scholar 

  10. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86(24):10024–10028. doi:10.1073/pnas.86.24.10024

    Article  PubMed  CAS  Google Scholar 

  11. Lorimer IA, Keppler-Hafkemeyer A, Beers RA, Pegram CN, Bigner DD, Pastan I (1996) Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display. Proc Natl Acad Sci USA 93(25):14815–14820. doi:10.1073/pnas.93.25.14815

    Article  PubMed  CAS  Google Scholar 

  12. Beers R, Chowdhury P, Bigner D, Pastan I (2000) Immunotoxins with increased activity against epidermal growth factor receptor vIII-expressing cells produced by antibody phage display. Clin Cancer Res 6(7):2835–2843

    PubMed  CAS  Google Scholar 

  13. Niederman TM, Ghogawala Z, Carter BS, Tompkins HS, Russell MM, Mulligan RC (2002) Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci USA 99(10):7009–7014. doi:10.1073/pnas.092562399

    Article  PubMed  CAS  Google Scholar 

  14. Lupton SD, Brunton LL, Kalberg VA, Overell RW (1991) Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol Cell Biol 11(6):3374–3378

    PubMed  CAS  Google Scholar 

  15. Murphy GJ, Mostoslavsky G, Kotton DN, Mulligan RC (2006) Exogenous control of mammalian gene expression via modulation of translational termination. Nat Med 12(9):1093–1099. doi:10.1038/nm1376

    Article  PubMed  CAS  Google Scholar 

  16. Szentirmai O, Baker CH, Lin N, Szucs S, Takahashi M, Kiryu S et al (2006) Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 58(2):365–372 (discussion-72)

    Article  PubMed  Google Scholar 

  17. Brocker T (2000) Chimeric Fv-zeta or Fv-epsilon receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 96(5):1999–2001

    PubMed  CAS  Google Scholar 

  18. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5):933–941. doi:10.1016/j.ymthe.2005.04.016

    Article  PubMed  CAS  Google Scholar 

  19. Gade TP, Hassen W, Santos E, Gunset G, Saudemont A, Gong MC et al (2005) Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res 65(19):9080–9088. doi:10.1158/0008-5472.CAN-05-0436

    Article  PubMed  CAS  Google Scholar 

  20. Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A et al (2005) The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 28(3):203–211. doi:10.1097/01.cji.0000161397.96582.59

    Article  PubMed  CAS  Google Scholar 

  21. Patel SD, Moskalenko M, Smith D, Maske B, Finer MH, McArthur JG (1999) Impact of chimeric immune receptor extracellular protein domains on T cell function. Gene Ther 6(3):412–419. doi:10.1038/sj.gt.3300831

    Article  PubMed  CAS  Google Scholar 

  22. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N et al (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66(22):10995–11004. doi:10.1158/0008-5472.CAN-06-0160

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG et al (2007) Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 18(8):712–725. doi:10.1089/hum.2007.028

    Article  PubMed  CAS  Google Scholar 

  24. Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK (2006) Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 20(10):1819–1828. doi:10.1038/sj.leu.2404366

    Article  PubMed  CAS  Google Scholar 

  25. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 20(1):70–75. doi:10.1038/nbt0102-70

    Article  PubMed  CAS  Google Scholar 

  26. Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC (2004) Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 64(24):9160–9166. doi:10.1158/0008-5472.CAN-04-0454

    Article  PubMed  CAS  Google Scholar 

  27. Wick W, Naumann U, Weller M (2006) Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 12(3):341–349. doi:10.2174/138161206775201901

    Article  PubMed  CAS  Google Scholar 

  28. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE et al (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66(6):3294–3302. doi:10.1158/0008-5472.CAN-05-3773

    Article  PubMed  CAS  Google Scholar 

  29. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Bigner DD (2008) Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 20(5):267–275. doi:10.1016/j.smim.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  30. Jiang HR, Gilham DE, Mulryan K, Kirillova N, Hawkins RE, Stern PL (2006) Combination of vaccination and chimeric receptor expressing T cells provides improved active therapy of tumors. J Immunol 177(7):4288–4298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was funded by the Goldhirsh Foundation in memory of Bernie Goldhirsh, the Brain Tumor Society, the Rappaport Foundation and NIH/NCI CA 69246 P01 grant “Gene Therapy for Brain Tumors.” Dr. John Gray assisted with production of the MR1 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob S. Carter.

Additional information

Szofia S. Bullain, Ayguen Sahin and Oszkar Szentirmai contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullain, S.S., Sahin, A., Szentirmai, O. et al. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J Neurooncol 94, 373–382 (2009). https://doi.org/10.1007/s11060-009-9889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9889-1

Keywords

Navigation