Skip to main content

Advertisement

Log in

Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft

  • Laboratory investigation - human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Endothelial progenitor cells (EPCs) are important initiators of vasculogenesis in the process of tumor neovascularization. However, it is unclear how circulating EPCs contribute to the formation of tumor microvessels. In this study, we isolated CD34+/CD133+ cells from human umbilical cord blood (HUCB) and obtained EPCs with the capacities of forming colonies, uptaking acetylated low-density lipoprotein (ac-LDL), binding lectins and expressing vascular endothelial growth factor (VEGF) receptor 2 (VEGFR-2, KDR), CD31 and von Willebrand factor (vWF). These EPCs were actively proliferative and migratory, and could formed capillary-like tubules in response to VEGF. When injected into mice bearing subcutaneously implanted human malignant glioma, EPCs specifically accumulated at the sites of tumors and differentiated into mature endothelial cells (ECs), which accounted for 18% ECs of the tumor microvessels. The incorporation of circulating EPCs into tumor vessel walls significantly affected the morphology and structure of the vasculature. Our results suggest that circulating EPCs constitute important components of tumor microvessel network and contribute to tumor microvascular architecture phenotype heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310. doi:10.1111/j.1750-3639.2005.tb00115.x

    PubMed  CAS  Google Scholar 

  2. Cogle CR, Scott EW (2004) The hemangioblast: cradle to clinic. Exp Hematol 32:885–890. doi:10.1016/j.exphem.2004.07.014

    Article  PubMed  Google Scholar 

  3. Nikolova G, Strilic B, Lammert E (2007) The vascular niche and its basement membrane. Trends Cell Biol 17:19–25. doi:10.1016/j.tcb.2006.11.005

    Article  PubMed  CAS  Google Scholar 

  4. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. doi:10.1016/j.ccr.2006.11.020

    Article  PubMed  CAS  Google Scholar 

  5. Aghi M, Chiocca EA (2005) Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 12:994–1005. doi:10.1016/j.ymthe.2005.07.693

    Article  PubMed  CAS  Google Scholar 

  6. Davidoff AM, Ng CY, Brown P, Leary MA, Spurbeck WW, Zhou J et al (2001) Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 7:2870–2879

    PubMed  CAS  Google Scholar 

  7. Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S et al (2003) Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4:277–289. doi:10.1016/S1535-6108(03)00240-X

    Article  PubMed  CAS  Google Scholar 

  8. Bian XW, Chen JH, Jiang XF, Wang QL, Zhang X (2004) Angiogenesis as an immunopharmacologic target in inflammation and cancer. Int Immunopharmacol 4:1537–1547. doi:10.1016/j.intimp.2004.07.017

    Article  PubMed  CAS  Google Scholar 

  9. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T et al (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111. doi:10.1016/j.ccr.2004.11.023

    PubMed  CAS  Google Scholar 

  10. Quesada AR, Munoz-Chapuli R, Medina MA (2006) Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev 26:483–530. doi:10.1002/med.20059

    Article  PubMed  CAS  Google Scholar 

  11. Eichhorn ME, Strieth S, Dellian M (2004) Anti-vascular tumor therapy: recent advances, pitfalls and clinical perspectives. Drug Resist Updat 7:125–138. doi:10.1016/j.drup.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  12. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H et al (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105:1527–1536. doi:10.1172/JCI8296

    Article  PubMed  CAS  Google Scholar 

  13. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427. doi:10.1073/pnas.070046397

    Article  PubMed  CAS  Google Scholar 

  14. Ping YF, Yao XH, Chen JH, Liu H, Chen DL, Zhou XD et al (2007) The anti-cancer compound Nordy inhibits CXCR4-mediated production of CXCL8 and VEGF by malignant human glioma cells. J Neurooncol 84:21–29. doi:10.1007/s11060-007-9349-8

    Article  PubMed  CAS  Google Scholar 

  15. Ferrari N, Glod J, Lee J, Kobiler D, Fine HA (2003) Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther 10:647–656. doi:10.1038/sj.gt.3301883

    Article  PubMed  CAS  Google Scholar 

  16. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967. doi:10.1126/science.275.5302.964

    Article  PubMed  CAS  Google Scholar 

  17. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  18. Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 115:186–194. doi:10.1046/j.1365-2141.2001.03077.x

    Article  PubMed  CAS  Google Scholar 

  19. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 929:362–367

    Google Scholar 

  20. Machein MR, Renninger S, de Lima-Hahn E, Plate KH (2003) Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol 13:582–597. doi:10.1111/j.1750-3639.2003.tb00487.x

    Article  PubMed  CAS  Google Scholar 

  21. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  22. Asai J, Takenaka H, Kusano KF, Ii M, Luedemann C, Curry C et al (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113:2413–2424. doi:10.1161/CIRCULATIONAHA.105.603167

    Article  PubMed  CAS  Google Scholar 

  23. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al (2007) Re-defining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809. doi:10.1182/blood-2006-08-043471

    Article  PubMed  CAS  Google Scholar 

  24. Urbich C, Dimmeler S (2004) Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 14:318–322. doi:10.1016/j.tcm.2004.10.001

    Article  PubMed  CAS  Google Scholar 

  25. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236. doi:10.1172/JCI6889

    Article  PubMed  CAS  Google Scholar 

  26. Santarelli JG, Udani V, Yung CY, Cheshier S, Wagers A, Brekken RA et al (2006) Incorporation of bone marrow-derived flk-1-expressing CD34+ cells in the endothelium of tumor vessels in the mouse brain. Neurosurgery 59:374–382. doi:10.1227/01.NEU.0000222658.66878.CC

    Article  PubMed  Google Scholar 

  27. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S et al (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328. doi:10.1161/01.CIR.0000055313.77510.22

    Article  PubMed  CAS  Google Scholar 

  28. Mancuso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, Bertolini F (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–3661. doi:10.1182/blood.V97.11.3658

    Article  PubMed  CAS  Google Scholar 

  29. Beerepoot LV, Mehra N, Vermaat JS, Zonnenberg BA, Gebbink MF, Voest EE (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15:139–145. doi:10.1093/annonc/mdh017

    Article  PubMed  CAS  Google Scholar 

  30. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:164–1169. doi:10.1161/01.CIR.0000058702.69484.A0

    Article  Google Scholar 

  31. McCarty MF, Liu W, Fan F, Parikh A, Reimuth N, Stoeltzing O et al (2003) Promises and pitfalls of anti-angiogenic therapy in clinical trials. Trends Mol Med 9:53–58. doi:10.1016/S1471-4914(03)00002-9

    Article  PubMed  CAS  Google Scholar 

  32. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835. doi:10.1038/nrc925

    Article  PubMed  CAS  Google Scholar 

  33. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257. doi:10.1038/35025220

    Article  PubMed  CAS  Google Scholar 

  34. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi:10.1126/science.1104819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs Wei Sun and Miss Li-Ting Wang (Central Laboratory, Third Military Medical University, Chongqing, China) for their technical assistance in laser confocal scanning microscopy. This study was supported by grants from the National Basic Research Program of China (973 Program, No. 2006CB708503) and the Outstanding Scholar Fellowship of P.L.A. (No.06J012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-wu Bian.

Additional information

Hua-rong Zhang, Fei-lan Chen and Chen-ping Xu—contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Hr., Chen, Fl., Xu, Cp. et al. Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. J Neurooncol 93, 165–174 (2009). https://doi.org/10.1007/s11060-008-9757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9757-4

Keywords

Navigation