Skip to main content

Advertisement

Log in

The anti-cancer compound Nordy inhibits CXCR4-mediated production of IL-8 and VEGF by malignant human glioma cells

  • Lab Investigation-Human/Animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The chemokine receptor CXCR4 plays an important role in tumor growth, angiogenesis and metastasis. Our previous studies showed that Nordy, a synthetic chiral compound of nordihydroguaiaretic acid, inhibited the growth and angiogenesis of various malignant tumors. In this study we examined the capacity of Nordy to regulate CXCR4–mediated production of angiogenic factors by human glioblastoma cells. We found that Nordy potently inhibited CXCR4 ligand SDF-1-induced production of IL-8 and vascular endothelial cell growth factor, two important angiogenic factors implicated in the progression of malignant tumors. Further study revealed that the effect of Nordy was attributable to its down-regulation of the expression of functional CXCR4 in glioblastoma cells. These results suggest that the anti-cancer activity of Nordy is due, at least in part, to its suppression of the chemokine receptor CXCR4 thus reducing the production of angiogenic factors by tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bian XW, Jiang XF, Chen JH, Bai JS, Dai C, Wang QL, Lu JY, Zhao W, Xin R, Liu MY, Shi JQ, Wang JM (2006) Increased angiogenic capabilities of endothelial cells from microvessels of malignant human gliomas. Int Immunopharmacol 6:90–99

    Article  PubMed  CAS  Google Scholar 

  2. Bian XW, Chen JH, Jiang XF, Bai JS, Wang QL, Zhang X (2004) Angiogenesis as an immunopharmacologic target in inflammation and cancer. Int Immunopharmacol 4:1537–1547

    Article  PubMed  CAS  Google Scholar 

  3. Rempel SA, Dudas S, Ge S, Gutierrez JA (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111

    PubMed  CAS  Google Scholar 

  4. Bertolini F, Dell’ Agnola C, Mancoso P, Rabascio C,Burlini A, Monestiroli S,Gobbi A, Pruneri G,Martinelli G (2002) CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Res 62:3106–3112

    PubMed  CAS  Google Scholar 

  5. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  6. Wang JM, Deng X, Gong W, Su S (1998) Chemokines and their role in tumor growth and metastasis. J Immunol Methods 220:1–17

    Article  PubMed  CAS  Google Scholar 

  7. Yang SX, Chen JH, Jiang XF, Wang QL, Chen ZQ, Zhao W, Feng YH, Xin R, Shi JQ, Bian XW (2005) Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem Biophys Res Commun 335:523–528

    Article  PubMed  CAS  Google Scholar 

  8. Suratt BT, Petty JM, Young SK, Malcolm KC, Lieber JG, Nick JA, Gonzalo JA, Henson PM (2004) Worthen GS:Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104:565–571

    Article  PubMed  CAS  Google Scholar 

  9. Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14:171–179

    Article  PubMed  CAS  Google Scholar 

  10. Hu J, Deng X, Bian X, Li G, Tong Y, Li Y, Wang Q, Xin R, He X, Zhou G, Xie P, Li Y; Wang JM, Cao Y (2005) The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin Cancer Res 11:4658–4665

    Article  PubMed  CAS  Google Scholar 

  11. Chen JH, Bian XW, Yao XH, Gong W, Hu J, Chen K, Iribarren P, Zhao W, Zhou XD (2006) Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun 342:1368–1374

    Article  PubMed  CAS  Google Scholar 

  12. Zhou Y, Bian X, Le Y, Gong W, Hu J, Zhang X, Wang L, Iribarren P, Salcedo R, Howard OM, Farrar W, Wang JM (2005) Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst 97:823–835

    Article  PubMed  CAS  Google Scholar 

  13. Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, Pavenstadt H (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168:6244–6252

    PubMed  CAS  Google Scholar 

  14. Hjortland GO, Lillehammer T, Somme S, Wang J, Halvorsen T, Juell S, Hirschberg H, Fodstad O, Engebraaten O (2004) Plasminogen activator inhibitor-1 increases the expression of VEGF in human glioma cells. Exp Cell Res 294:130–139

    Article  PubMed  CAS  Google Scholar 

  15. Bello L,Giussani C,Carrabba G, Pluderi M, Costa F, Bikfalvi A (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284

    PubMed  CAS  Google Scholar 

  16. Cheng SY, Nagane M, Huang HS, Cavenee WK (1997) Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF 165 but not VEGF 189. Proc Natl Acad Sci USA 94:12081–12087

    Article  PubMed  CAS  Google Scholar 

  17. Zagzag D (1995) Angiogenic growth factors in neural embryogenesisn and neoplasia. Am J Pathol 146:293–309

    PubMed  CAS  Google Scholar 

  18. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310

    Article  PubMed  CAS  Google Scholar 

  19. Gagner JP, Law M, Fischer I, Newcomb EW, Zagzag D (2005) Angiogenesis in glioma:imaging and experimental therapeutics. Brain Pathol 15:342–363

    Article  PubMed  CAS  Google Scholar 

  20. Wang DY, Anderson JC, Gladson CL (2005) The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol 15:318–326

    Article  PubMed  CAS  Google Scholar 

  21. Cai J, Jiang WG, Ahmed A, Boulton M (2006) Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Microvasc Res 71:20–31

    Article  PubMed  CAS  Google Scholar 

  22. Baba Y, Kato Y, Mochimatsu I, Nagashima Y, Kurihara M, Kawano T, Taguchi T, Hata R, Tsukuda M (2004) Inostamycin suppresses vascular endothelial growth factor-stimulated growth and migration of human umbilical vein endothelial cells. Clin Exp Metastasis 21:419–425

    Article  PubMed  CAS  Google Scholar 

  23. Miura S, Fujino M, Matsuo Y, Tanigawa H, Saku K (2005) Nifedipine-induced vascular endothelial growth factor secretion from coronary smooth muscle cells promotes endothelial tube formation via the kinase insert domain-containing receptor/fetal liver kinase-1/NO pathway. Hypertens Res 28:147–153

    Article  PubMed  CAS  Google Scholar 

  24. Bont ES, Rosati S, Jacobs S, Kamps WA, Vellenga E (2001) Increased bone marrow vascularization in patients with acute myeloid leukaemia: a possible role for vascular endothelial growth factor. Br J Haematol 113:296–304

    Article  PubMed  Google Scholar 

  25. Acker T, Beck H, Plate KH (2001) Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mech Dev 108:45–57

    Article  PubMed  CAS  Google Scholar 

  26. Koch AE, Polverini PJ,Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  PubMed  CAS  Google Scholar 

  27. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376

    PubMed  CAS  Google Scholar 

  28. Salcedo R, Resau JH, Halverson D, Hudson EA, Dambach M, Powell D, Wasserman K, Oppenheim JJ (2000) Differential expression and responsiveness of chemokine receptors (CXCR1–3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J 14:2055–2064

    Article  PubMed  CAS  Google Scholar 

  29. Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM (1994) Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409–1415

    Article  PubMed  CAS  Google Scholar 

  30. Trevino JG, Summy JM, Gray MJ, Nilsson MB, Lesslie DP, Baker CH, Gallick GE (2005) Expression and activity of Src regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Res 65:7214–7222

    Article  PubMed  CAS  Google Scholar 

  31. Desbaillets I, Diserens AC, Tribolet N, Hamou MF, VanMeir EG (1997) Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 186:1201–1212

    Article  PubMed  CAS  Google Scholar 

  32. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol 7:122–133

    Article  PubMed  CAS  Google Scholar 

  33. Wakabayashi Y, Shono T, Isono M, Hori S, Matsushima K, Ono M, Kuwano M (1995) Dual pathways of tubular morphogenesis of vascular endothelial cells by human glioma cells: vascular endothelial growth factor/basic fibroblast growth factor and interleukin-8. Jpn J Cancer Res 86:1189–1197

    PubMed  CAS  Google Scholar 

  34. Darash YM, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E, Peled A (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18:1240–1242

    Google Scholar 

  35. Lin TJ, Issekutz TB, Marshall JS (2001) SDF-1 induces IL-8 production and transendothelial migration of human cord blood-derived mast cells. Int Arch Allergy Immunol 124:142–145

    Article  PubMed  CAS  Google Scholar 

  36. Wang J, Wang J, Sun Y, Song W, Nor JE, Wang CY, Russell S. Taichman RS (2005) Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 17:1578–1592

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Natural Science Foundation of China (NSFC, No. 30370552), National High Technology Project of China (No. 2002AA001010) and Key Project of Chongqing Science and Technology Committee (CSTC-2005AA5007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-wu Bian.

Additional information

Y.-F. Ping, X.-H. Yao, and J.-H. Chen contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, Yf., Yao, Xh., Chen, Jh. et al. The anti-cancer compound Nordy inhibits CXCR4-mediated production of IL-8 and VEGF by malignant human glioma cells. J Neurooncol 84, 21–29 (2007). https://doi.org/10.1007/s11060-007-9349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9349-8

Keywords

Navigation