Skip to main content

Advertisement

Log in

Production of angiogenic factors by human glioblastoma cells following activation of the G-protein coupled formylpeptide receptor FPR

  • Lab. Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Activation of the formylpeptide receptor (FPR), a G-protein-coupled receptor, by its chemotactic peptide ligand N-formylmethionyl-leucyl-phenylalanine (fMLF) promotes the directional migration and survival of human glioblastoma cells. fMLF also stimulates glioblastoma cells to produce biologically active VEGF, an important angiogenic factor involved in tumor progression. In this study, we examined the capacity of FPR to regulate the production of another angiogenic factor, the chemokine IL-8 (CXCL8), in addition to its demonstrated ability to induce VEGF secretion by malignant glioma cells. We showed that the human glioblastoma cell line U87 secreted considerable levels of IL-8 (CXCL8) upon stimulation by the FPR agonist peptide fMLF. Tumor cells transfected with small interference (si)RNA targeting FPR failed to produce IL-8 as well as VEGF in response to fMLF. Glioblastoma cells bearing FPR siRNA exhibited reduced rate of tumorigenicity in nude mice and tumors formed by such tumor cells showed less active angiogenesis and lower level expression of both IL-8 and VEGF. These results suggest that FPR plays an important role in the angiogenesis of human malignant gliomas through increasing the production of angiogenic factors by FPR positive tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hocking B (2005) Occupational risk factors for low grade and high grade glioma. Int J Cancer 116:164

    Article  PubMed  CAS  Google Scholar 

  2. Wei Q, Clarke L, Scheidenhelm DK, Qian B, Tong A, Sabha N, Karim Z, Bock NA, Reti R, Swoboda R, Purev E, Lavoie JF, Bajenaru ML, Shannon P, Herlyn D, Kaplan D, Henkelman RM, Gutmann DH, Arthur GA, Labatt S (2006) High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 66:7429–7437

    Article  PubMed  CAS  Google Scholar 

  3. Salmaggi A, Eoli M, Frigerio S, Silvani A, Gelati M, Corsini E, Broggi G, Boiardi A (2003) Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. Neuro Oncol 62:297–303

    Article  Google Scholar 

  4. Desbaillets I, Diserens AC, de Tribolet N, Hamou MF, Van Meir EG (1999) Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18:1447–1456

    Article  PubMed  CAS  Google Scholar 

  5. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncol 7:122–133

    Article  PubMed  CAS  Google Scholar 

  6. Funakoshi M, Sonoda Y, Tago K, Tominaga S, Kasahara T (2001) Differential involvement of p38 mitogen-activated protein kinase and phosphatidyl inositol 3-kinase in the IL-1-mediated NF-kappa B and AP-1 activation. Int Immunopharmacol 1:595–604

    Article  PubMed  CAS  Google Scholar 

  7. Zhou Y, Bian X, Le Y, Gong W, Hu J, Zhang X, Wang L, Iribarren P, Salcedo R, Howard OM, Farrar W, Wang JM (2005) Formylpeptide receptor FPR and the rapid growth of magligant human glioma. J Natl Cancer Inst 97:823–835

    Article  PubMed  CAS  Google Scholar 

  8. Varney ML, Johansson SL, Singh RK (2006) Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. Am J Clin Pathol 125:209–216

    Article  PubMed  CAS  Google Scholar 

  9. Le Y, Iribarren P, Zhou Y, Gong W, Hu J, Zhang X, Wang JM (2004) Sliencing the formylpeptide receptor FPR by short-interfering RNA. Mol Pharmacol 66:1022–1028

    Article  PubMed  CAS  Google Scholar 

  10. Plate KH, Risau W (1995) Angigenesis in malignant gliomas. Glia 15:339–347

    Article  PubMed  CAS  Google Scholar 

  11. Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognosis indicator for patients with astroglia brain tumors. Cancer 77:362–372

    Article  PubMed  CAS  Google Scholar 

  12. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    Article  PubMed  CAS  Google Scholar 

  13. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391

    Article  PubMed  CAS  Google Scholar 

  14. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, Dipietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–8011

    Article  PubMed  CAS  Google Scholar 

  15. Schadendorf D, Moller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM (1992) IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol 151:2667–2675

    Google Scholar 

  16. Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM (1994) Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409–1415

    Article  PubMed  CAS  Google Scholar 

  17. Luca M, Huang S, Gershwald JE, Singh RK, Reich R, Bar-Eli M (1997) Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 151:1105–1113

    PubMed  CAS  Google Scholar 

  18. Mukaida N, Mahe Y, Matsushima K (1990) Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 265:21128–21133

    PubMed  CAS  Google Scholar 

  19. Yamanaka R, Tanaka R, Yoshida S (1993) Effects of irradiation on cytokine production in glioma cell lines. Neurol Medico-Chiruraica 33:744–748

    Article  CAS  Google Scholar 

  20. Desbaillets I, Diserens AC, de Tribolet N, Hamou MF, Van Meir EG (1997) Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 186:1201–1212

    Article  PubMed  CAS  Google Scholar 

  21. Kasahara T, Oda T, Hatake K, Akiyama M, Mukaida N, Matsushima K (1998) Interleukin-8 and monocyte chemotactic protein-1 production by a human glioblastoma cell line, T98G in coculture with monocytes: involvement of monocyte-derived interleukin-1alpha. Eur Cytokine Netw 9:47–55

    PubMed  CAS  Google Scholar 

  22. Palma C, Manzini S (1998) Substance P induces secretion of immunomodulatory cytokines by human astrocytoma cells. J Neuroimmunol 81:127–137

    Article  PubMed  CAS  Google Scholar 

  23. Kehlen A, Thiele K, Riemann D, Rainov N, Langner J (1999) Interleukin-17 stimulates the expression of IkappaB alpha mRNA and the secretion of IL-6 and IL-8 in glioblastoma cell lines. J Neuroimmunol 101:1–6

    Article  PubMed  CAS  Google Scholar 

  24. Choi C, Kutsch O, Park J, Zhou T, Seol DW, Benveniste EN (2002) Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol Cell Biol 22:724–736

    Article  PubMed  CAS  Google Scholar 

  25. Choi C, Xu X, Oh JW, Lee SJ, Gillespie GY, Park H, Jo H, Benveniste EN (2001) Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res 61:3084–3091

    PubMed  CAS  Google Scholar 

  26. Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M (1997) Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 17:4015–4023

    PubMed  CAS  Google Scholar 

  27. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376

    PubMed  CAS  Google Scholar 

  28. Wakabayashi K, Kambe F, Cao X, Murakami R, Mitsuyama H, Nagaya T, Saito K, Yoshida J, Seo H (2004) Inhibitory effects of cyclosporin A on calcium mobilization-dependent interleukin-8 expression and invasive potential of human glioblastoma U251MG cells. Oncogene 23:6924–6932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from National Natural Science Foundation of China (NSFC, No. 30670804), the National Key Research Project of Basic Sciences of China (973 project, No. 2006CB708503) and the National High Technology Development Program (863 project, No. 2006 AA02Z475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Wu Bian.

Additional information

Xiao-Hong Yao and Yi-Fang Ping contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, XH., Ping, YF., Chen, JH. et al. Production of angiogenic factors by human glioblastoma cells following activation of the G-protein coupled formylpeptide receptor FPR. J Neurooncol 86, 47–53 (2008). https://doi.org/10.1007/s11060-007-9443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9443-y

Keywords

Navigation